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Abstract 

Our proposed solutions to the nearest neighbour searching problem for Point Location in Balls are an alternative to 

Sariel Har-Peled's recent work on Approximate Voronoi Diagrams, which maintains the logarithmic search time, and 

reduces the space bound to linear. This work is published in the Proc. of IEEE FOCS in 2001 and can be accessed online 

at http://www.uiuc.edu/~sariel/papers. We achieve this by streamlining the building of the algorithm that reduces the 

number of balls generated by it to O(n log n), as described in [S. Har-Peled, A replacement for Voronoi diagrams of near 

linear size, in: Proc. of IEEE FOCS, 2001, pp. 94-103, full version available from http://www.uiuc. edu/sariel/papers]. In 

order to accomplish linear space decomposition for closest neighbour searches, we further decrease the ball count by 

introducing a novel hierarchical decomposition strategy and expanding upon PLEBs. Our data structures are constructed 

with a temporal complexity of O(n log n). 

Keywords: Voronoi diagrams; Approximate nearest neighbor; Data structures 
 

 

1. Introduction 

I will use a metric space and a collection of n points as P. Constructing a P-based data structure that effectively 

permits closest neighbour searches is one of the most basic challenges with varied applications. This issue has 

workable answers in two-dimensional planar space, but it becomes non-trivial in three-dimensional and higher-

dimensional Euclidean spaces [5,9]. An overarching strategy for nearest neighbour searching is to construct a 

Voronoi diagram of P (Hereinafter Vor(P)), a space partition that includes all points that are closer to a given point 

of P than any other point in P. Each cell in the diagram contains one such point. Computer scientists in 

computational geometry rely on voronoi diagrams for a wide variety of tasks, such as surface reconstruction, 

learning, motion planning, clustering, and more. Voronoi diagram generalisations to objects other than point sets are 

also very helpful (for a comprehensive review, see Aurenhammer [6]). Despite having many uses, voronoi diagrams 

have a major flaw: they are very structurally complicated.  

 

 

computational bottleneck and the resulting ity. The exponentially complex worst-case complexity in Rd is known to 

be θ (n「d/2 ) with constants in d. As a result, it becomes computationally impossible to generate and store these 

diagrams as their dimensions increase.  

 

Therefore, in recent years, researchers have focused on finding alternative solutions to closest neighbour searches in 

greater dimensions [1,4,8,12–14]. The related relaxed issue of approximate nearest neighbour search has gained 

prominence and has showed promise of practical solutions because the exact problem looks closely tied to the 

complexity of Voronoi diagrams. We want to get a data structure by preprocessing the dataset P, given a constant ε 

< 1. D,  

 

that, given a query point q, efficiently returns a point P such that the distance between p and q, denoted as pr P, is 

less than or equal to (1 ⋤ ε) times the distance between pr and q. P is an ε closest neighbour (ε-NN) of q, and dist 

might be any arbitrary measure in this case.  
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The work of Indyk and Motwani [12], where they simplified the issue of ε-NNS to Approximate Point Location in 

Equal Balls (ε-PLEB), is particularly relevant to this research.  

 

 

Definition 1.1. When given a query point q and a parameter r, an ε-PLEB(P, r) data structure finds a point p in P such 

that dist(p, q) < r, if one exists, given P and r. Returns nil if there is no point pr ∈ P such that dist(pr,q) < r(1 + ε). 

Anything else may result in a return. It is referred to as PLEB(P, r) when ε equals zero.  

A new ring-cover tree was used by Indyk and Motwani to decrease ε-NNS to ε-PLEB. A basic hash-based method is 

used to resolve the ε-PLEB. Nevertheless, their reduction was extremely complicated; however, Har-Peled [11] made a 

complete improvement by presenting an alternate space decomposition known as an Approximate Voronoi Diagram 

(AVD), which allows for approximate nearest neighbour searching and has a much lower space complexity. His findings 

are summarised below. 
 

 

Theorem 1.1 (Har-Peled). Given P of n points in Rd   and a parameter ε  > 0 one can compute a set   (P ) 

of O(n log n log n/ε) regions where each region is a cube or an annulus of cubes. The regions of   (P ) are disjoint 

and cover the space and each region has an associated point p   P,  so that for any point q   c, the point p is a ε-NN 

of q in P and it can be computed in O(log(n/ε)) steps. 
The time for constructing the data structure is O(n log n log2 n/ε). 

ε 
 

Har-Peled also used a more sophisticated data structure for solving ε-NNS based on the BBD data structure of 

Arya et al. [1]. 

 
1.1. Our results 

 
If AVD could be made linear-sized instead of near linear, it would be a significant improvement above Har-Peled's 

previous work. In this study, we generalise the concept of PLEBs to Point Location in Smallest Ball (PLSB), where the 

balls may have variable radii, and we accomplish space reduction by extending some of the principles of Har-Peled. For 

more specific definitions, see Section 4, however we also provide an approximation of it. This issue has also been 

implicitly—and more ad hocly—addressed by Har Peled [11].  

It should be noted that PLEB is an example of PLSB where the radii of each ball is equal. 

Lemma 1.1. An ε-PLSB on n balls can be solved for d-dimensional space endowed with metric lp, in O(log n) query time 

and O(n/εd ) space. 

Appendix C provides a synopsis of the approach, which is comparable to Har-Peled [11]. We shall limit the number of 

balls in the data structure, which is directly proportional to the space complexity, in the remaining work. 

In the part that follows, we generate a set of balls straight from the clustering and decrease their number by a factor of 

log n, thereby eliminating the recursive nature of the Har-Peled's approach. There is no change to the logarithmic search 

time and an improvement of O(log n) to the preprocessing time.  

 

on Section 4, we use a novel hierarchical clustering approach, which is also grounded on the MST of P, to enhance the 

space bound to linearity. Using a quicker approximation MST approach that requires O(n log n) time—the same as Har-

Peled—we are able to minimise the preprocessing time, which is practically quadratic due to the precise MST 

construction. As a general rule, in Har-Peled's data structure, we combined two clusters whenever their MST edge was 

the smallest. A comparison of hierarchical  

 

This clustering method differs from Har-Peled's in that, rather than attempting to combine the two closest clusters, we 

merge many clusters in stages such that the resulting new cluster has a small diameter (Section 4).  

 

Using Callahan and Kosaraju's [7] well separated space decomposition, Arya and Malamatos [2] independently obtained 

a comparable result. Additionally, they achieve space-time trade-offs for generalising the Voronoi cells with multiple 
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representatives, an improvement that has been made by Arya et al. [3]. A potential  

 

The number of balls produced by our technique is much lower—O(n)—than that of  

 

A other search structure, not the BBD tree, could be able to take use of this, and the time complexity would be O((α√d) 

n).  
 

2. A brief review of Har Peled’s construction 

 

Har-Peled [11], proposes a solution based on the following observation: 
 

Observation 2.1. Let the distance between two points A and B be |AB|. If a query point Q lies further than k · |AB| 

from A and B, where k is set to 1/ε, then both A and B are ε-neighbors of Q, i.e., 
|QA|

 < 1 + ‹. 
In addition, a clustering approach for organising the points into a hierarchical tree is suggested by Har-Peled [11]. If you 

were to grow balls around all the spots, you would end up with linked components. Further, we use the linked parts to 

build a forest, also known as a cluster tree.  

At the outset, we work with only the collection of points. Accordingly, we begin with n linked components that 

comprise the individual points. There are n trees in the matching forest, and each tree has one leaf that represents a point. 

The balls are then evenly grown around all the spots. At the spots where two components' balls touch, a new component 

is formed by merging the two components, and this new component takes the place of the two components at those 

locations. By randomly hanging one tree on top of the other, we combine the two trees in the matching forest that 

represent the merging components (see Fig. 1).  

 

Now we additionally attach a value of rloss(p) to the tree's root, p, from the other tree. When these parts come together, 

this number represents the ball's radius. It is half of the distance between the two components' nearest locations, in fact.  

 

 

Thus rloss(p) = radius of the ball at p, when p ceases to be root. 

2.1. Properties of the cluster tree 
 

• Values of rloss increase along a path towards the root. 

• If Lmax is the longest edge of the MST, the tree edge corresponding to this is the last edge to be added. 

 

Fig. 1. Constructing the cluster tree. 
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• If any query point q  that is outside of the union of balls of radii Lmax.|P |.1/‹ centered at p ∈ P , then any point 

p is an ‹-nearest neighbor of q , i.e., q is too far from P . Note that the diameter of P  is bounded by Lmax.|P |. 
Any subtree (cluster) that forms during building also has the aforementioned qualities.  

It requires O(n2) time to calculate an accurate d-dimensional MST for high d, but Har-Peled settles for a nd-factor 

approximation that can be done in O(n log n) time. 

In order to answer the estimated closest neighbour queries in O(log(n)) time, he uses the nd-MST to build a nd-stretch 

Hierarchical Clustering and then provides a technique for building a family of PLEBs (Point Location in Equal Balls). 

The search continues by iteratively scanning the remaining points after trimming certain clusters based on some PLEBs. 

We need to build O(log n) PLEBs for every recursive call, and there are O(log n) levels total. At last, a compressed 

quadtree [1] is created by merging all of the O(n log2 n) balls. The space limit is about O(n log2 n) and is dependent on 

the number of balls created by the PLEB family.  

 

Improving the space bound 

2.2. Here we provide an alternative viewpoint, explaining how we might reduce the amount of balls needed to answer 

approximate closest neighbour queries by removing overlapping and unnecessary balls from the collection of 

balls centred around a point p P. The approximate closest neighbour question may be answered by providing the 

centre of the smallest ball that includes a query point, and we provide an independent approach for building balls 

around P points.  

 
Building the nd-hierarchical clustering 

The following definitions are similar to Har-Peled that have been restated for convenience of the reader. 
 

Definition 3.1 (λ-MST). A tree T having the points of P in its nodes, is a λ-MST of P , if it is a spanning tree of P , 
having a value len(.) associated with each edge of T , such that for any edge e     uv  of T , len(e) ≤ d(P1, P2) ≤ 

λ len(e), where P1, P2 is the partition of P into two sets as induced by the two connected components of T -e, and 

d(P1, P2) = minx∈P1 ,y∈P2  ǁxyǁ is the distance between P1 and P2. 

One can compute a nd-MST of P in O(n log n) time. Har-Peled [11] shows how such an nd-MST can be con- 

structed, and is similar to the fair-split tree construction of Callahan and Kosaraju [7]. 

Definition 3.2 (λ-Stretch hierarchical clusteringFor any point p in a directed tree T, there exists an out-edge from p to its 

parent with a value rloss(p) that satisfies the following property:  

 

If we have C1 and C2 as connected components obtained from building balls of radius r around all points and F as the 

forest obtained by removing all edges larger than r from T and X as the partition of P into subsets induced by the 

connected components of the forest, then C1 X C2, where X Y, and A and B are in the same component in X if and only 

if they are in the same component in Y.  

 

The following is the process for constructing the nd-stretch hierarchical clustering using the nd-MST:  

 

We arrange the nd-edges MST's in ascending order of their len(.) values. Afterwards, we go down the list. By inserting 

an edge between the roots of the two subtrees, we are able to link the two subtrees to which x and y belong in each 

iteration. We do this by taking the next edge, e xy, from the sorted list and hanging the smaller tree onto the bigger one. 

With this edge e, we connect the value rloss(e) = len(xy)/2.  

 

At the very beginning of the tree, at the root t, we set rloss(t) = max(rloss(pi)), where pi is a child of t.  
 
Observation 3.1. The height of the tree formed in the λ-stretch hierarchical clustering of P is at most log n. (Hanging the 

smaller tree below the larger one insures this property.) 

We will use b(p, r) to denote the ball of radius r centered at p. 
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Definition 3.3 (rdeath, rlow, rhigh). For an approximation factor γ , define rdeath(p) = 6λrloss(p)n log n/γ and de- 

fine rlow(p) = (1/(1 + γ /3))rloss(p).  rlow(p)  gives us a  value just smaller than  rloss(p), s.t., if  a query point 

q  ∈/ b(p, rlow(p))  but  q  ∈ b(p, rloss(p)),  then  p  is  a  (1 + γ /3)-approximate  NN  of  the  query  point.  Also,  define 

rhigh(p) = (36λrloss(p)n log n/γ ). Note that for any point p, rhigh(p) > rdeath(p). 

Definition 3.4 (parent), parenti(p). In the tree that is created by the λ-stretch hierarchical clustering of P, parent(p) is 

defined as the parent of node p. The ith parent of node p in the tree that is generated by the λ-stretch hierarchical 

clustering of P is defined as parenti(p), where parent0(p) is p and parenti(p) is parent(parent(i−1)(p)). The function 

parenti(p) is defined up to the point when it becomes the root of the tree that is generated by the λ-stretch hierarchical 

clustering of P, but it is not defined after the root. 

 
We will use Subtree(p) to denote the subtree rooted at p. 

 
2.3. Construction of balls (algorithm ConstructBalls(P , γ )) 

 
In this section λ nd. Given a λ-stretch hierarchical clustering of P , for each point p in P , let r0 be the rloss value 

for p and let p1, p2 , . . . , pm be the children of p in sorted order of their rloss values, i.e., rloss(p1) ≤ rloss(p2) ≤ ≤ 
rloss(pm). Also, let x be the parent of p in the tree formed by the λ-stretch hierarchical clustering of P . 

We construct the following ball sets around p: 

 
(1) Balls with radius ri = rloss(p)(1 + γ /3)(j

−1)  for j = 0 , . . . , M  − 1, where M = 「log
(1+γ/3)

(1 + γ /3)(r
high(p)/ rloss(p)) . 

This defines a ball set in the range [rlow(p), rhigh(p)]. 

(2) Balls with radius ri = rloss(pi)(1 + γ /3)(j
−1) for j = 0 , . . . , M  − 1, where M = 「log

(1+γ/3) 
(1 + γ /3)(r

high(pi)/ rloss(pi)) . 

This defines a ball set in the range  rlow(pi), rhigh(pi) 1 ≤ i ≤ m. 
We also construct a universal ball (of infinite radius) centered at the point that is the root of the tree formed by the 

λ-stretch hierarchical clustering of P , so that any point that is not in any of the balls constructed by the above rules 

lies in this ball. 

 
2.4. Correctly answering (1 + ‹)-approximate NN queries 

In this subsection we prove that reporting the center of the smallest ball that contains a query point from the set of 

balls constructed by the algorithm ConstructBalls answers the approximate nearest neighbor query correctly. 

 
Observation 3.2.   ab   ≥ 2rloss(p)   a    Subtree(p) and b / Subtree(p) as 2rloss(p) is the minimum separation 

between any point in the cluster from any point outside it by definition of rloss. 

 
Find the biggest ball such that for every query point beyond it we may claim another point exists which is a close 

neighbour of the query point with a limited cumulative approximation error; this will allow us to restrict the number of 

balls we build around a particular point.  

If the query point is not within the biggest ball that can be created around the point x, then parent(x) is a neighbour of 

the query point with some accumulated approximation error, as shown in the following lemma, which also states that 

rhigh(x) is a limit on the radius of the largest ball. Therefore, we may disregard the point x, but this will result in an 

approximation mistake that will add up over time. 

The cumulative mistake is a factor of 1 γ/(3 log n), according to the rhigh(x) formulation. As we shall see in a bit, this 

number is selected in such a way that the cumulative approximation mistakes can only grow up to a reasonable limit.  
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Lemma 3.1. For any query point q , if  x  is a  (1 + α)-NN of q  in  P , and if ǁqx ǁ > rhigh(x), then parent(x)  is a 

((1 + γ /(3 log n))(1 + α))-NN of q in P.  

Proof. The proof of this lemma is similar to the proof of Lemma 2.13 in [11]. 

Let  z   be  parent  of  x   in  the  λ-stretch  hierarchical  clustering  of  the  set  of  points  P .  Note  that  ǁqx ǁ > 
rhigh(x) > rdeath(x). By the same argument as in Lemma 2.10 of [11], ǁzx ǁ ≤ 2nλrloss(x) = (γ /(3 log n))rdeath(x) < 

(γ /(3 log n))ǁqx ǁ. Therefore, ǁzq ǁ ≤ ǁqxǁ + ǁzx ǁ ≤ (1 + γ /(3 log n))ǁqx ǁ ≤ (1 + γ /(3 log n))(1 + α)dP (q). 

It follows that parent(x) is a ((1 + γ /(3 log n))(1 + α))-NN of q in P . □ 
If the query point is not in the biggest ball surrounding the current candidate, we may recursively consider the parent of 

the current candidate as the next closest neighbour candidate. This is shown in the following lemma. Any time we move 

the candidate closer to the parent, our guess becomes more inaccurate. 

 
Lemma 3.2. Let p be the NN of a query point q in P.  Let r be the radius of the smallest ball containing q and let it 

be centered at x . If r > rhigh(parenti(p))    0 ≤ i ≤ j      1, then parentj (p) is a ((1     γ /(3 log n))j -approximate NN 

of q in P.  
 

Proof. The proof is by induction on j using Lemma 3.1. □ 

Since we are making balls such that each one is larger by a factor of 1/3 compared to the one before it, we argue that 

reporting the nearest neighbour might result in an additional approximation error factor of 1/3 for the following lemma. 

What this means is that even though p is closer, we may end up reporting a different point x instead of p if q is in one of 

the balls in the ballset of p and p is the closest neighbour of q. This is due to the fact that the ball with q centred at x is 

smaller than the ball with q centred at p, even though p is closer. We can do this by using a discrete collection of balls, 

but there is an extra approximation error factor of 1 + γ/3, which means that we will report x instead of p.  

 

 

Lemma 3.3. For any query point q, if p is a (1 + α)-NN of q in P,  and if there exists a ballset, centered at p, in 

[rlow(t ), rhigh(t)] for some point t , and if the smallest ball containing q has radius r, such that rloss(t) ≤ r ≤ rhigh(t) 
and is centered at x, then x is a (1 + γ /3)(1 + α)-approximate NN of q in P.  

Proof. If x = p, then we are done. 

Suppose x =/  p. Then two cases arise, either q ∈/ B(p, rhigh(t )) or q ∈ B(p, rhigh(t )). We will show in either case 

that dP (q) ≤ ǁxq ǁ ≤ (1 + γ /3)(1 + α)dP (q). 

Case I. q ∈/ B(p, rhigh(t )). 

In this case, ǁpq ǁ > rhigh(t) ≥ r > ǁxq ǁ. This implies that x  is closer to q  than p and therefore trivially ǁxq ǁ < (1 + 
γ /3)(1 + α)dP (q). 

Case II. q ∈ B(p, rhigh(t )). 

Clearly,  q  ∈/  B(p, rlow(t )),  because  otherwise  the  smallest  ball  containing  q  would  have  radius  ≤ rlow(t)  and 

r ≥ rloss(t) > rlow(t ) leading to a contradiction that the smallest ball containing q  has radius r . Hence, ∃j , such that 

q ∈ B(p, rj ) and q ∈/ B(p, rj+1), where r0 = rlow(t), implying that rj  < ǁpq ǁ ≤ rj+1 = (1 + γ /3)rj . 

Therefore, ǁxqǁ ≤ r ≤ rj+1 = (1 + γ /3)rj  < (1 + γ /3)ǁpqǁ ≤ (1 + γ /3)(1 + α)dP (q). This means that x is a near-

NN of q in P that is (1 + γ /3)(1 + α)-approximate.  

Assume that the query point q is included in the ball with radius rloss(p) for every given location p. Then, it's clear that 

the query point q's nearest neighbours can only be points in the cluster formed by the subtree of the hierarchical 

clustering tree rooted at p. Even then, we have no idea which of these stances is nearest; p may be one of them. This can 

only be accomplished by creating additional balls around p with radii that are compatible with the ballsets.  
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comprised of nodes that are children of p. This method has the potential to reveal which of p's progeny is geographically 

nearest to the point q that we're trying to identify. There is no difference between this and the set of balls generated by 

algorithm ConstructBalls in accordance with rule 2. It is worth noting that the child nodes of p would be more 

appropriate representations of the children farther down the hierarchy than the balls that may be built around p.  

 

If we use method ConstructBalls to produce balls, the previous lemma shows that in that case, we can only answer the 

queries with a further compounded approximation inaccuracy of a factor of 1 + γ/3.  
 
Lemma 3.4. For any query point q, if p is a (1     α)-NN of q in P,  and we have balls constructed around the points of P 
as defined by ConstructBalls, and if the smallest ball containing q has radius r, such that r  < rloss(p) and is centered 

at x, then x is a (1 + γ /3)(1 + α)-approximate NN of q in P .  

Proof. If q / B(p, rloss(p)), then  pq  > rloss(p) > r ≥  xq  implying that x is closer to q than p and therefore 

trivially xq ≤ (1 γ /3)(1 α)dP (q). 
Suppose q   B(p, rloss(p)). Since q   B(x, r) and q   B(p, rloss(p)), these balls intersect. Then x    Subtree(p) 

because all balls of radius < rloss(p) centered around points / Subtree(p) cannot intersect since   ab    ≥ 2rloss(p) 

a  Subtree(p) and b / Subtree(p). Let p1 be the child of p, such that x  Subtree(p1). We consider three cases 
based on the value of r. 

 
Case I. r < rloss(p1). 

 
We know that x ∈ Subtree(p1) and p ∈/ Subtree(p1). Then ǁpq ǁ > r , because otherwise ǁpx ǁ ≤ ǁpqǁ + ǁqx ǁ < r + r = 

2r ≤ 2rloss(p1), and this would contradict Observation 3.2. 

This implies that x is closer to q than p and therefore trivially ǁxq ǁ ≤ (1 + γ /3)(1 + α)dP (q). 

Case II. r > rhigh(p1). 
 

This case is not possible as we do not construct balls larger than rhigh(t) around any point t of P , and rhigh(t) ≤ 
rhigh(p1) ∀t ∈ Subtree(p1), but we know that there is a ball centered at x ∈ Subtree(p1) that contains q. 

Case III. rloss(p1) ≤ r ≤ rhigh(p1). 

Since there is a ballset around p in the interval  rlow(p1), rhigh(p1)  ,   j , such that q     B(p, rj ) and q  / B(p, rj+1), 

where r0  rlow(p1). This implies that  pq  > rj . It must be that r ≤ rj   1, because otherwise B(p, rj   1) would be a 

ball of radius smaller than r containing the query point q. 

Therefore, ǁxq ǁ ≤ r ≤ rj+1 = (1 + γ /3)rj  < (1 + γ /3)ǁpq ǁ ≤ (1 + γ /3)(1 + α)dP (q). 

Thus in all valid cases, x is a (1 + γ /3)(1 + α)-approximate NN of q in P . □ 

In the following theorem, we combine the results of all the previous lemmas to show that the construction of balls 

in algorithm ConstructBalls does answer the approximate nearest-neighbor queries correctly. 

 
Theorem 3.1. For a point set P and an approximation factor ‹, Let the smallest ball containing q, in the balls formed 

by algorithm ConstructBalls(P , γ ), where γ      ‹/2, be of radius r, centered at x, then x is a (1     ‹)-approximate NN 

of q in P.  

 
Proof. Let p be the NN of q in P . 

 
Case I. r < rhigh(p). 

 

– rloss(p) ≤ r ≤ rhigh(p): 

If rloss(p) ≤ r ≤ rhigh(p), then by the construction in algorithm ConstructBalls, since there exists a ballset in 

[rlow(p), rhigh(p)], using Lemma 3.3, x is a (1 + γ /3)-NN of q in P . 
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– r < rloss(p): 
If r < rloss(p), then using Lemma 3.4, x is a (1 + γ /3)-NN of q in P . 

Case II. r > rhigh(parenti(p)) and r < rhigh(parent(i
+1)(p)) for some i. 

By Lemma 3.2, parenti
+1(p) is a ((1 + γ /(3 log n))i+1-approximate NN of q in P . 

– If rloss(parenti
+1(p)) ≤ r ≤ rhigh(parenti

+1(p)), then by the construction in algorithm ConstructBalls, since there 

exists a ballset in [rlow(parenti
+1(p)), rhigh(parenti

+1(p))], centered at parenti
+1(p). Using Lemma 3.3, x  is a 

((1 + γ /(3 log n))i+1(1 + γ /3)-approximate NN of q in P . 
– If r < rloss(parenti

+1(p)), then using Lemma 3.4, x is a ((1 + γ /(3 log n))i+1(1 + γ /3)-NN of q in P . 
Also i + 1 ≤ log n, since height of the tree formed by the λ-stretch hierarchical clustering of P is bound by log n. 

Therefore x is a ((1 + γ /(3 log n))log n(1 + γ /3)-approximate NN of q in P . 

Case III. r > rhigh(t), where t is the root of the tree formed by the λ-stretch hierarchical clustering of P. 

 

There is no ball in P of radius > rhigh(p). Thus t is reported as the approximate-NN of q in P as q lies in the 

universal ball centered at t . 
By Lemma 3.2, t is ((1 γ /(3 log n))i -approximate NN of q in P , where i ≤ log n, since height of the tree formed 

by the λ-stretch hierarchical clustering of P is bound by log n. 

Therefore x is a ((1 + γ /(3 log n))log n(1 + γ /3)-approximate NN of q in P . 
And as (1 + γ /3)(1 + γ /(3 log n))log n ≤ 1 + 2γ , x is a (1 + 2γ )-approximate NN of q in P . 
Hence x is a (1 + ‹)-approximate NN of q in P . □ 

2.5. A bound on the total number of balls required 

 
In the following theorem we analyze the number of balls that we construct in the algorithm ConstructBalls. 

 
Theorem 3.2. The total number of balls constructed by the algorithm ConstructBalls(P ,‹/2) is O((1/‹2)n log(n/‹)). 

 

Proof.  The number of balls in a ball set is O((1/‹) log1   O(‹)(n/‹)) O((1/‹2) log(n/‹)). 
For each point, one ballset is constructed for the point by rule 1 of algorithm ConstructBalls. Additionally, one ballset 

is constructed for each child of the point by rule 2 of algorithm ConstructBalls. By charging the balls constructed 

around the child nodes (using rule 2) by algorithm ConstructBalls to the respective child nodes, the charge incurred at 

each point is at most that of 2 ball sets, i.e., O((1/‹2) log(n/‹)). 

Therefore, the total charge incurred over the n points is O((1/‹2)n log(n/‹)). □ 

This improves the bound on the number of balls constructed in [11] by a factor of log n. These balls can be used to 

construct cells, i.e., quadtree boxes, and then store them in a BBD-tree as described in [11] resulting in an improvement 

of a factor of log n in space complexity and preprocessing time while keeping the query time logarithmic. 

 

3. A linear space solution based on ε-PLSB and a new hierarchical clustering 

 

As we showed in the last section, the recursive nature of the data structure proposed by Har-Peled [11] may be 

eliminated, resulting in an O(n log(n)) space. We generate balls of radius between rloss(p), rloss(p) (1  ), rloss(p) (1 

‴)2,..., rdeath(p) around each point in the database, which causes the additional log(n) factor to emerge. Every point in 

the database contributes Ω(log(n)) since rdeath(p) is defined as Ω(n/ε) times rloss(p). We really do not need rdeath(p) to 

be so high, however. It is necessary for rdeath to be the distance beyond which no point in the subtree(p) is any closer to 

the query point q than any other point in the tree. Assuming that diam is the diameter of a collection of points, an 

acceptable distance for that may be O(diam(subtree(parent(p)))/ε.  

Despite using this rdeath definition, the number of balls that might be created could still be O(n log(n)). Take the 

following example to illustrate the point: there is a line that connects n locations (let's call them p1, p2,..., pn) such that 
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the distance between points pi and pi+1 is 1 plus ih, where h is 

 

 

 

 

Fig. 2. Two different clustering for almost equidistant points in a line. 

 

4 so little that it defies calculation. The MST is obviously only one chain. Even if we rethink rdeath as proposed, the quantity of 

balls produced by the method in [11] (and its adaptation here) remains Ω(n log(n)). The issue is that while building the 

hierarchical clustering, the method in [11] doesn't take the edge-lengths of the approximation MST into account, other from 

their relative ordering. We rethink the way hierarchical clustering is built in order to address that issue. We also care about the 

absolute values of the MST's edge lengths, not only their relative ordering; in other words, we don't differentiate between 

edges with almost similar lengths. Hence, the hierarchical clustering in the first case may seem different, as shown in Figure 2. 

Obviously, the second one is better; we'll go back to this specific instance later.  

 

4.1. ε-NNS and ε-PLSB 

 
The problem that we address here is a related problem called Approximate Point Location in Smallest Ball (ε-

PLSB) which is an approximate version of Point Location in Smallest Ball (PLSB) problem. In defining ε-PLSB, we 

take care of the following. 

 
(1) The approximate version of PLSB can be solved by searching for cubes in a hierarchical grid as [11] (see Appen- 

dix C). 

(2) The approximate nearest neighbor searching problem is reducible to the ε-PLSB problem. 

 

For this, we make use of another point q
r
 which will ensure that the approximation factor 1 ε is achieved from the 

nearest neighbor of p. A point p is an ε-PLSB solution for a query point q, if there exists q
r
 such that (i) p is a PLSB 

solution for q
r
 and (ii) q

r
 is near q. The formal definitions follow. 

 
Definition 4.1. 

 

(1) PLSB. Given a set of points P , and a finite set Q    P     R, we want to build a data structure D, such that given 

any query point q, we are able to return a pair (p, r)     Q, such that b(p, r) is the smallest ball containing q. If 

there is no such ball, then it should return NIL. 

(2) ε-PLSB. Given a set of points P , and a finite set Q P   R, we want to build a data structure D, such that given 

any query point q: 

(i) If q      b(p, r) for some (p, r)      Q, then we must return a pair (p
r
,r

r
)     Q, such that r

r
 ≤ r and there exists 

a point q
r
   b(p

r
,r

r
) such that dist(q, q

r
) ≤ r

r
ε and b(p

r
,r

r
) is the smallest ball containing q

r
 among balls 

from b(p, r) (p, r) Q (p
r
 is solution to PLSB query for q

r
). 

(ii) If q is not contained in any ball from the set b(p, r(1 ε))   (p, r) Q , then we should return NIL. 

(iii) Otherwise, we can return anything (even NIL). 
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Fig. 3. The reduction of ε-NNS to ε-PLSB—the intermediate steps illustrate the proof strategy. 

 
If we have a collection of points P, we can build a special set of balls B around those points (see to Definition 4.5) in 

such a way that the value of ε-PLSB in B gives us the approximate neighbour in P. To do this, we use the method shown 

in Figure 3.  

A meticulously built hierarchical clustering of the point set P accomplishes the first reduction phase. Quite broadly, our 

hierarchical clustering is defined. The leaves of this binary tree are subsets of the input point set P that contain exactly 

one element each. As a subtree's leaves converge at a certain node, we say that node is internal. We build an instance I of 

ε-PLSB for any given tree in such a way that performing the query q for I can solve any nearest neighbour query for the 

point set P. To represent the minimum distance between two sets X and Y, we use the notation dist(X, Y). Here we 

define hierarchical clustering using this notation. 

 

Definition 4.2 (Hierarchical clustering). Given a point set P , its hierarchical clustering is a binary tree with 

singleton subsections of P serving as leaves, with each subsection of P appearing a unique number of times. The 

junction of the sub-tree leaves at each internal node indicates that node. Thus, every branch in the tree represents a 

cluster, which is a subset of P. Do not forget that cluster P is the root. Two numbers, rmin(v) and rmax(v), are associated 

with the following attributes for each internal node v in the tree. 
 
(1) rmin values increase from leaves to root. 

(2) rmin(v) ≤ 1 dist(left(v), right(v)). 

(3) rmax(v) ≥ 8 diam(v) 
. 

Definition 4.3. For every cluster v of T , we pick an arbitrary point p ∈ v and call it leader(v). 

Definition 4.4 (BallRange(p, r1, r2)). It is defined to be the set of all balls centered at p of radius between r1 and r2. 

BallRange(p, r1, r2) = {b(p, r)|r1 ≤ r ≤ r2}. Note that there are infinite number of balls in BallRange(p, r1, r2). 

Definition 4.5 (BallSet(v)). For a cluster v of a hierarchical clustering T , we define BallSet(v) to be 

 

• If v is leaf, then BallSet(v) = φ. 

• Otherwise, BallSet(v) = BallSet(left(v)) ∪ BallSet(right(v)) ∪ Bl ∪ Br , where Bl = BallRange(leader(left(v)), 
rmin(v), rmax(v)), Br = BallRange(leader(right(v)), rmin(v), rmax(v)). 

Note that BallSet(v) is actually a union of 2|v|− 2 BallRanges. 

Definition 4.6 (Inner ball versus outer ball). A ball is called an inner ball, if it is the smallest ball for one of the 

BallRanges of BallSet(v). Otherwise, it is called an outer ball. 

 

Observation 4.1. If b(p, r) BallSet(v) is an inner ball of BallSet(v), then r rmin(u), for u Subtree(v) in the 

hierarchical clustering of v. 

 
Observation 4.2. Suppose, the ball b(p, r) is the smallest ball in BallSet(v) containing q. If b(p, r) is an outer ball, 

then dist(q, p) = r. 

4.2. Details of the reduction 
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∪ = 
∪ = 

= = ∪ ∪ ∪ 
= 

= 

dist(q,v) dist(q,left(v)) 1 

dist(q,p)   rmax(v)  8  

We provide the reduction approach from ε-NNS to ε-PLSB for an lp metric on Rd, given a hierarchical clustering. Three 

stages might be seen as dividing this procedure. The first thing we do is make an endless supply of balls P1 such that  

 

The answer to the PLSB inquiry q to P1 is a spherical shape, with its centre located around q's ε/7-nearest neighbour. 

Moving on to the next phase, we create a limited collection of balls P2 from P1 in such a way that the ball centred 

around the 2ε/3-nearest neighbour of q is the result of the PLSB query q to P2. The outcome of the ε/7-PLSB query q to 

P2 is a ball that revolves around the ε-nearest neighbour of q in P, as we have shown in our proof.  
 

4.2.1. Generating P1 (reduction to PLSB with infinite No. of balls) 

Here we have to reduce ε/7-NNS to PLSB with infinite number of balls. For that, we prove that for any cluster v 
of T , BallSet(v) is such a point set. The exact statement is the Theorem 4.1. 

 
Theorem 4.1. For a cluster v of T , given a query point q, a point p   v is ε/7 nearest neighbor of q among points 

of v, if one of the following is true. 

 

• If p is the center of the smallest ball in BallSet(v) containing q. 

• There is no ball in BallSet(v) containing q. 

Note that the second condition depends only on q, and so any arbitrary database point p is ε/7-nearest in that case. 
 

Proof. We prove it by induction on the height of v in T . In the base case, v is a leaf, and BallSet(v) is empty. So, it 

is trivially proved. 

Now, in the induction step, we assume the result for left(v) and right(v), and prove it for v. Let p1 leader(left(v)) 
and p2     leader(right(v)). By definition, BallSet(v)     (BallSet(left(v))    Bl)    (BallSet(right(v))    Br ), where Bl 
and Br are a set of balls around p1 and p2, respectively. Note that BallSet(left(v))  Bl   B1 (say) is a set of balls 

with centers among points of left(v) and BallSet(right(v))     Br      B2 (say) is a set of balls with centers among points 

of right(v). We consider three cases (exhaustive but not necessarily disjoint). 

 

Case 1. Since, b(p1, rmax(v)) ∈ B1, so dist(q, p1) ≥ rmax(v) ≥ 8 diam(v)/ε. So, distance between q and p1 is large 

compared to the diameter of v. It is easy to see that for any point p ∈ v, ≤ ≤ ≤ 1 + ε/7. 
dist(q,v) rmax(v)−diam(v) 8−ε 

 
Case 2. There exists no ball in B2 containing q: Similar to Case 1. 

 

Case 3. There exists a ball each in B1 and B2 containing q: Let, the smallest ball in B1 and B2 containing q be 

b(p1
∗, r1) and b(p2

∗, r2), respectively. To handle this case, we use the Lemma 4.1 proved later. 

Lemma 4.1. p1
∗ is an ε/7-nearest neighbor of q , among points of left(v), and p2

∗ is an ε/7-nearest neighbor of q , 

among points of right(v). 

 
Now we consider the three sub-cases arising in Case 3. We have dist(q, p1

∗) ≤ r1 and dist(q, p2
∗) ≤ r2. 

Case 3a. The ball b(p1
∗, r1) is an inner ball: In this case, from Observation 4.1, we have r1 = rmin(v

r
) for some v

r
 ⊆ v. 

Using this with the definition of rmin we get: dist(q, p1
∗) ≤ r1 = rmin(v

r
) ≤ rmin(v) ≤ 0.5 dist(left(v), right(v)). This 

implies that dist(q, left(v)) ≤ 0.5 dist(left(v), right(v)). But, dist(q, right(v)) ≥ dist(left(v), right(v))−dist(q, left(v)). 
Therefore, dist(q, right(v)) ≥ 0.5 dist(left(v), right(v)) ≥ dist(q, left(v)). So, dist(q, v) = dist(q, left(v)). Now, 
dist(q,p1

∗ )  
=  

dist(q,p1
∗) 

≤ 1 + ε/7. So, p
∗
 is an ε/7 nearest neighbor of q in v. 

Also, any ball in B2 containing q must have a radius larger than dist(q, right(v)). But, dist(q, right(v)) ≥ 

0.5 dist(left(v), right(v)) ≥ rmin(v
r
)      r1. So, any ball in B2  containing q  is larger than b(p1

∗, r1). So, we see that 

the smallest ball containing q in BallSet(v) is centered around ε/7 nearest neighbor of q in v. 

 
Case 3b. The ball b(p2

∗, r2) is an inner ball: Similar to Case 3a. 
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≤ 1 + ε/7. Therefore 

= 
= 

= ∪ 

  

+ + + 

dist(q,left(v)) dist(q,right(v)) 1 2 

 

Case 3c. Both the balls b(p2
∗, r2) and b(p2

∗, r2) are outer balls: From Observation 4.2, we have r1 dist(q, p1
∗) and 

r2 dist(q, p2
∗). Without loss of generality, r1 ≤ r2 . So, b(p1

∗, r1)  is the smallest ball containing q , in B1 B2 
BallSet(v). 

Also,    
dist(q,p1

∗) ≤ 1 + ε/7 and 
dist(q,p2

∗ ) 
≤ 1 + ε/7 from the Lemma 4.1. Since, p

∗
 is nearer to q than p

∗
, 

dist(q,p1
∗ ) 

dist(q,right(v)) 
dist(q,p1

∗) 
min(dist(q,left(v)),dist(q,right(v))) ≤ 1 + ε/7. This implies that p1

∗ is the ε/7 

nearest neighbor of q in v. □ 

Now we give the proof of Lemma 4.1. 

 
Proof. Lemma 4.1 will only be proven for B1 here. The same holds true for B2. We may express it as B1 

BallSet(left(v)) Bl. Assuming that no ball in BallSet(left(v)) includes q, all the points in left(v) are ε/7-nearest 

neighbours of q according to the induction hypothesis. The smallest ball in BallSet(left(v)) that contains q is centred 

around an ε/7-nearest neighbour of q in left(v) if q is included in a ball of BallSet(left(v)). Assume that the smallest ball 

in BallSet(left(v)) that contains q is b(pr,rr). Our task is complete if this is the tiniest ball in B1. Forget about it. From Bl 

comes the tiniest ball in B1. Take Bl (and by extension, B1) as a whole, and consider the smallest ball b(p1, rrr). 
 
Case (i). b(p

r
,r

r
) is an outer ball: In this case, dist(q, p

r
)       r

r
. So, if the smaller ball is b(p1,r

rr
), then dist(q, p1) ≤ 

r
rr
 ≤ r

r
 dist(q, p

r
). So, we choose a ball nearer than the ε/7-nearest neighbor. Clearly, that is also ε/7-nearest 

neighbor. 

 
Case (ii). b(p

r
,r

r
) is an inner ball: In this case, r

r
 is rmin(v

r
) for some v

r
 ⊂ v. The smallest ball in Bl is of radius 

rmin(v). So r
rr
 ≥ rmin(v) ≥ rmin(v

r
) = r

r
. So, the b(p

r
,r

r
) is a smaller ball, which is a contradiction. So, this proves 

Lemma 4.1. □ 

4.2.2. Generating P2 from P1 (reduction to PLSB with finite No. of balls) 

In this section, we show that we need to retain only a finite number of balls of P1. For that we consider each ball 

range separately. 

 
Theorem 4.2. Given a hierarchical clustering T = (V , E) for a point set P,  we can construct a set of 

2 
  

max

 

1, log 
 

 

rmax(v) 
 

 

balls such that following is true for a PLSB constructed for them. Given a query point q, the point returned by PLSB 

data structure is 1 + 2ε/5 nearest neighbor of q among points of P .  

Proof. We start with BallSet(P ). Recall that there are infinite number of balls. We shall retain a carefully selected 

finite set from these. Recall that balls in the BallSet(P ) can be expressed as union of 2|P | − 2 BallRanges. We replace 

each maximal BallRange(p, r1, r2) ⊂ BallSet(P ) with 

ε k   

b(p, r) . r = r1  1 + 
7 

∧ r ≤ r2(1 + ε/7) ∧ k ∈ {0, 1, 2,. .  .} . 

Let B be this finite set of balls. We will show that, a PLSB constructed for B returns a ball which is centered around 

a (1 ε/7)(1 ε/7) (≤ (1 2ε/5)) nearest neighbor. This completes the proof of the theorem. 

Suppose, q is a query point, for (ε/7)-PLSB of B. Suppose, b(p, r) is the smallest ball containing q among balls 

of BallSet(P ). 

 
Case 1 (b(p, r) is an inner ball of BallSet(P )). From Theorem 4.1, we know, that p is an ε/7-nearest neighbor of q. 

Also, we know that b(p, r) is contained in B(B contains all the inner balls of BallSet(P )). So, b(p, r) is the smallest 

ball in B containing q, and p is an ε/7-nearest neighbor of q. Hence proved. 

v∈V 

therefore 

1+ε rmin(v) 
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+ + 
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2 max(1, log1+ε  
rmax(v) ). So, we need at most 2 

.
v∈V  max(1, log1+ε  

rmax(v) ) balls. 

1+ε rmin(v) 1+ε 

v∈V 

Case 2 (b(p, r) is an outer ball of BallSet(P )). In this case, we observe that there is a ball b(p, r
r
) ∈ B, with r

r
 at most 

r(1 + ε/7) which contains q. So, the smallest ball in B containing q is of radius utmost r(1 + ε/7). So, the center of 

the smallest ball in B containing q is at a distance of at most r(1 + ε/7) from q, which is (1 + ε/7)2 dist(q, P). □ 

4.2.3. Reduction to ε/7-PLSB with finite No. of balls 

Theorem 4.3. Given a hierarchical clustering T = (V , E) for a point set P,  we can construct a set of 

2 
  

max

 

1, log 
 

 

rmax(v) 
 

 

balls such that following is true for an ε/7-PLSB constructed for it. Given a query point q, the point returned by 

ε/7-PLSB data structure is 1 + ε nearest neighbor of q among points of P.  

Proof. We use the same finite set of balls B as used in Theorem 4.2, and show that an ε/7-PLSB made for it satisfies 

the above condition. Suppose, b(p, r) is the ball returned by the ε/7-PLSB data structure for B. 

 
Case 1 (q ∈ b(p, r)). From definition of ε/7-PLSB, we get that b(p, r) is the smallest ball in B containing q. Using 

Theorem 4.2, we get that p is (1 + ε/7)2 nearest neighbor of q. 

Case 2 (q ∈/ b(p, r)). In this case, we observe from the definition of ε/7-PLSB, that there exists a query point q
r
, such 

that dist(q, q
r
) ≤ εr/7 and b(p, r) is the smallest ball in B containing q

r
. Using this with Theorem 4.2, dist(q, P) + 

dist(q, q
r
) ≥ dist(q

r
, p)/(1 + ε/7)2. This implies dist(q, P) ≥ dist(q

r
, p)/(1 + ε/7)2 − εr/7. Simplifying, we get 

dist(q, P) ≥ dist(q
r
, p)(1 + ε). So, p is a ε nearest neighbor of q. □ 

B is composed of ball ranges, two for each cluster. Number of balls in ballranges corresponding to cluster v is 

rmin(v) 
 

4.3. Some observations on MST based hierarchical clustering 

rmin(v) 

 

Given a point set P , we want to construct a hierarchical clustering such that 

2 
  

max

 

1, log 
rmax(v) 

  

= O
 
|P | log (1/ε)

 
. 

The procedure to construct such a hierarchical clustering is quite involved. We shall first describe a simpler hierar- 

chical clustering which achieves O(|P | log1  ε(|P |/ε)) bound. Then we describe methods for improving it to obtain 

O( P log1  ε(1/ε)) bound. 
The first hierarchical clustering that we describe is directly based on the MST of the point set. Suppose, the MST 

of the point set P  is M = (P , EM
r ). Then we construct the hierarchical clustering as follows: The longest edge in EM

r 

divides P into two parts, say P1 and P2. We find the hierarchical clusterings of P1 and P2 recursively, say C1 and C2. 

The MST hierarchical clustering of P , then, has P as root and C1 and C2 as two children of the root. 

Suppose, v is a cluster in the MST hierarchical clustering. We use 

1 
rmin(v) = 

2 
dist left(v), right(v) and 

rmax(v) = 8 diam(v)/ε. 

Consider any two points p1, p2 v. Consider the path connecting p1 and p2 in the MST. Suppose, e1, e2 , .. .,  el 
are the edges in the path. Then by repeated application of triangle inequality, we get dist(p1, p2) ≤ len(e1) len(e2) 

len(el). Since, l is at most n and len(ei) ≤ dist(left(v), right(v)) (because dist(left(v), right(v)) is the length of 

the largest edge in MST over v). Therefore, for any p1, p2 v we have dist(p1, p2) ≤ n dist(left(v), right(v)). So, 

diameter of v is at most n dist(left(v), right(v)). Thus, 

rmax(v) ≤ 8n dist
 
left(v), right(v)

 
/ε. 

v∈V 

1+ε rmin(v) 
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=

  | | 

= 

− 

− 

rmin(p) 

rmin(v) 2 4 

1 2 l i 

p 

v 

 

So, 

 

 

Thus 

 

rmax(v) 

rmin(v) 
= O(n/ε). 

 
2 max  1, log

 rmax(v) 
O  P  log 

rmin(v) 

 
 
 

 
1+ε 

 
 
|P |/ε

  
. 

v∈V 

Here are some issues with MST hierarchical clustering:  

 

(1) Building the MST is a part of the preprocessing that takes almost quadratic time.  

 

(2) Finding the diameters of point sets is computationally intensive and is part of the preprocessing.  

 

(3) Instead of being linear, the space need is n log n.  

 

Approximate MSTs are used to address the initial issue. We use different interpretations of rmax(v) to deal with the 

second issue. Before we provide our answer in the following part, let's examine some cases pertaining to the third 

difficulty.  

 

Ω( P log( P )) is the worst-case space requirement for the current MST hierarchical clustering. A collection of n points 

p1, p2,..., pn on a straight line with dist(pi, pi 1) = ih is one example. In this case, h is a very little number. A line graph 

(Fig. 2) represents the MST in this instance, and  
 

 
log 

rmax(p) 
= O(log 1 + log 2 + · · ·  + log n) = Ω(n log n). 

For the case where the edge lengths are growing geometrically, say, 2i, for i 1, 2 , . ..  , the MST hierarchical clus- 

tering is actually linear. 

 
4.4. An alternate hierarchical clustering 

 
We provide a one-dimensional solution for points in a line case in linear space for the sake of exposition.  

Ignoring the exact ordering, let's use the prior example based on the fact that all MST edges are almost equal. Building 

on this concept, we create the completely balanced tree-shaped hierarchical clustering shown in Figure 2 (the second 

clustering). For this instance, 
 

log 
rmax(v) 

= O

  
n 

log 2 + 
n 

log 4 + · · ·  + log n

   

= O(n). 

Partitioning the edges of this MST into sets where all the edges inside a set have lengths within a factor of two of each other is the 

essence of our method. All edges within a single partition are treated as if they were of the same length when building the hierarchical 

clustering from the approx MST. Our standard MST hierarchical clustering procedure involves sorting the edges in ascending order of 

length and continuously merging clusters linked by the edges. The sequence of merging will be rearranged here. A lot more work 

goes into this reordering for the general d-dimensional clustering. A more straightforward approach is shown, nevertheless, for a 

single dimension. 

 

Let T = (P , EM ) be the MST for P . We partition EM , into {Ek | k ∈ Z}, where Ek = {e ∈ EM | 2k ≤ 

len(e) < 2k+1}. Suppose Ek  , Ek  , . . . , Ek , are the set of all non-empty Ek ’s with ki  < ki+1  (Fig. 4). We consider 

all edges in each Eki as being of effectively the same length and try to keep the clustering more balanced. Suppose We 

need to combine the clusters c0, c1, c2,..., ck 1 into one because of the edges in Eki. This is because, as a line graph, the MST 

naturally forms contiguous intervals, and these clusters would fit exactly into that description. We will assume, without limiting  
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i 

1 2 l 

ourselves, that the sequence c0, c1, c2,..., ck1 is the same as it appears on the actual line. Next, we arrange the nodes c0, c1,..., ck 1 in 

a height-balanced binary tree. This tree suggests a natural sequence for the merging, therefore that's how it happens. Any cluster v that 

is generated in phase i will have an rmin(v) equal to 2ki −1 for this clustering. 
Proof for points in a line case 

The result that the generated clustering is linear follows from following two observations. 

 

 
 

Fig. 4. Linear Hierarchical clustering for points in a line. 
 

(1) If Wi is the set of clusters that we add when we consider edges in Eki (so-called phase i), then 

log 
rmax(v) 

O 
rmin(v) 

len(e)   
.
 

2ki 

v∈Wi e∈Ek1 ∪Ek2 ∪···∪Eki 

This result requires some technical details that we provide for the general d-dimensional case. 
(2) The size of hierarchical clustering is linear. This follows by observing that in the previous result, if we add the 

contribution of each edge e ∈ Eki   to the total sum across all phases, we obtain O(len(e) 
.∞

j    i( )) = O(1) as 
  1   

 

len(e) = O(2ki ). Since there are O(|P |) edges in the MST, the total sum is (O(|P |)). 

4.5. Constructing the general hierarchical clustering 

 

As in the [11], we use a λ-MST instead of an exact MST. 

The central idea in our solution is to partition the edges of a λ-MST into sets, such that all the edges within a set have lengths 

within a factor of two of each other (actually any constant factor would work). While constructing the hierarchical clustering 

from the approximate MST, all the edges within a single set are considered as if of same length. 

Let T = (P , EM ) be a λ-MST for P . We partition EM , into {Ek | k ∈ Z}, where Ek = {e ∈ EM | 2k ≤ 

len(e) < 2k+1}. Suppose Ek  , Ek  , . . . , Ek , be the set of all non-empty Ek ’s with ki < ki+1. 

Recall that a hierarchical clustering is a labeled tree with the vertex set as a subset of power set of P . We construct the 

hierarchical clustering bottom up in l phases (l is the number of non-empty Ei ’s). In any phase i, we start with a forest1 Fi . We 

initialize with the singletons i.e. F1 ( p   p   P ,φ). Then, we iteratively merge the trees of F by creating new clusters in the 

forest, until we finally get a hierarchical clustering for P . By merging of two trees with roots v1 and v2, we mean adding a new 

cluster v1 v2, with v1 and v2 as its two children. For merging more than two trees, we mean to keep on doing the binary merge 

until they become part of a single tree. Fi is the forest at the start of phase i. So, F1 = ({{p}| p ∈ P },φ). We maintain the 

invariant that, C is a root of a tree in Fi iff C is a maximal connected component of (P , Ek1       
Ek2 

Eki−1 
). 

For any cluster v added in phase i, we assign 

2ki 

rmin(v) = 
2λ 

. 

Observation 4.3. 

 

(1) rmin values increase from leaves to root. This is because, vertices added in later phases (which have larger rmin 
values) are always “above” the vertices in earlier phases, in the hierarchical clustering. 

(2) rmin(v) ≤ 1 dist(left(v), right(v)). The proof is as follows. First observe that, the λ-MST edge going across any 

two maximal connected components of (P , Ek1 ∪ Ek2 ∪ · · · ∪ Ek −1 ) is of length at least 2ki . So, the distance 

 
1 A forest is a graph, which can be expressed as a union of vertex-disjoint trees. 

2ki = 
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λ 

λ 

  

ε 

rmin(v) 

= i 

2 

1+ε rmin(v) 

 

between those components is at least 2
ki 

. Since, children of any cluster added in phase i is also a union of 

maximal connected components of (P , Ek1 ∪ Ek2 ∪ · · ·  ∪ Eki−1 ), the distance between them is also lower bounded by 2
ki 

. 

 

Definition 4.7 (PathT (p1, p2)). Given a λ-MST T , we define PathT (p1, p2) for two points p1 and p2 as the set of 

edges on the unique path on T connecting p1 and p2. 

Definition 4.8 (S(v)). Given a λ-MST T , for a v ⊆ P , we define 

S(v) = 
p1,p2∈v 

PathT (p1, p2). 

Note that if v spans2 a connected component in T , then S(v) is simply the set of edges in T , which go across vertices 

of v. 

 

Definition 4.9 (S(v)). We define S(v) to be sum of lengths of all the edges in S(v). 

In our hierarchical clustering, we shall use 

S(v) 
rmax(v) = 8  

ε  
. 

Observation 4.4. 

diam(v) ≤ S(v). 

The proof is a simple application of triangle inequality along the path joining the two most distant points in v. 

 

From Observations 4.4 and 4.3, we conclude that the rmin and rmax values are well defined (consistent with the 

definition of the hierarchical clustering). 

In what follows, we let α = log1+ε( λ ). 

Theorem 4.4. Given a point set P and a λ-MST (say T ) of P,  there exists a hierarchical clustering of P,  with set of 

clusters V  such that 2 
.

v∈V  max(1, log1+ε  
rmax(v) ) = O(α|P |). Further, this clustering can be done in O(n log(n)) 

time. 

 
Proof. The proof of this theorem is based on the following lemma. 

 
Lemma 4.2. If Wi is the set of clusters that we add in phase i, then 

  
log 

 

 

rmax(v) 
= O

  

α × 
  dist(p1, p2) 

 
 

 

 

and the time taken in phase i is O(|Wi | log(n)). 

Using Lemma 4.2, we count the contribution of each edge of the λ-MST. Suppose, e ∈ Eki . Then, it does not 
contribute anything up to phase i − 1. In any phase j ≥ i, it contributes α len(e)/2kj . So, total contribution is at most 

α len(e) 
.∞

j    i(1/2kj ) ≤ 2α len(e)/2ki . Also, since  e ∈ Ek , so  len(e) ≤ 2ki +1. Therefore, the contribution of each 

edge is at most 4α and the total is O(α(number of edges in λ-MST)), which is clearly = O(α|P |). 

As for the total time taken, time taken in phase i is upper bounded by |Wi | log(n). Since, we add a total of 

n − 1 clusters, so total time taken is O(n log(n)). 
This completes the proof of Theorem 4.4. □ 

.
i |Wi| =  

 
 

2   Spans as in a spanning tree. A vertex set S spans a connected component in a graph G = (V , E) if the graph Gr = (S, E ∩ (S )) is a connected 

graph. 

2ki 

v∈Wi (p1,p2)∈Ek1 ∪Ek2 ∪···∪Eki 
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4.6. Merging within phase i—Lemma 4.2 

 

In this section we prove Lemma 4.2, using a series of intermediate results. We start by giving a graph theoretic 

result. 

 
Lemma 4.3. Given a tree T   and k of its vertices {v1, v2 , . . .,  vk} ( possibly repeated ), we can pair them up (if odd, 

1 vertex would be left out) as   (vi1 , vj1 ), . . . , (vik/2 , vjk/2 )  , so that the set of paths from vil   to vjl   are all edge disjoint 

in T . 
Furthermore, the tree T can be preprocessed in time O(n log n), such that once that is done, the pairing up of any 

given k vertices can be done in O(k log n) time. 

 

Proof. We prove it by induction on the number of nodes in the tree. The base case is simple. In induction step, pick 

any leaf, say v of the tree T . 
 

Case 1 (v is not among the vertices to be paired). Remove it from the tree and use the induction hypothesis to pair all 

the vertices. 

 
Case 2 (v is among the vertices to be paired). Then v must be connected to some other vertex in T . Let it be u. 

 

After deleting v and reversing the selection of u in T, couple u and v, and then pair the remainder of the vertices using 

the induction hypothesis. This process may be repeated if u is also to be paired.  

To avoid pairing u with v, delete v and choose u using the induction hypothesis. The next step is to pair each vertex with 

an adjacent vertex in T. Let us pretend that u and w are coupled. After that, keep all of the pairings except for v and w. 

Every one of the pathways is clearly edge-joint. 

We will create an algorithm that pairs k vertices in O(n) time using the aforementioned technique. With a preprocessing 

time of O(n log(n)), we want an algorithm that can pair the inputs in O(k log(n)) time. You can figure out the features 

from this sketch of the building. First things first: build an approximate MST balanced edge separator tree. The temporal 

complexity for this task is O(n log n). Then, we divide the k input points in half along the separator tree sides in order to 

solve a pairing issue for k points. The next step is to use the corresponding subtree to recursively couple the two 

components. Lastly, if there are any unpaired vertices in either side, they are joined up with each other to provide a 

partial solution. The obtained query time is O(k log(n)). □  

 

We give some additional definitions. 

 
Definition 4.10. 

 

(1) Gi is defined to be a sub-graph of the λ-MST of the point set P with vertex set P and edge set Ek1 ∪ Ek2 ∪ · · · ∪ 
Eki−1 . Note that it is a forest. 

(2) Ci is defined to be the set of connected components of Gi . 
(3) Hi is a forest over the connected components of Gi formed by edges in Eki . Its vertex set is Ci . The edge set is 

{(cs , ct ) | ∃(ps , pt ) ∈ Eki ,  ps ∈ cs ,  pt ∈ ct }. 

Observation 4.5. 

Ci = The set of all the roots of the rooted forest Fi. 

This follows from the discussion in Section 4.5. 

 
We shall use the Lemma 4.3 to merge the clusters in the form of what we call a star. The definition of a star follows. 

 
Definition 4.11 (Star). A set of clusters c0, c1, . .. ,  ck is called a star of the phase i with c0 as center, if they satisfy 

the following conditions. 
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c   ∪ c G0 k 

 i+1 
r 

    

    

  

− 

{ } 

 i+1 Ek , which connects c0 to ck. Suppose, for each cl, (vl,v
r
) be the edge connecting c0 to cl with vl ∈ c0 and 

j =1 j =0 

j =1 j =1 

 

• c0 spans a connected component in Gi+1 . 

• For each j ∈ {1, 2, . . . , k}, c0 ∪ cj  spans a connected component in Gi+1 . 

c0 is called the center of the star and c1, c2, .. . ,  ck are called the leaves of the star. 

 

4.6.1. Merging of a star 

For simplicity, we assume that number of leaves of the star is a power of two. First we make the following claim. 

 
Lemma 4.4. Given a star with center c0 and leaves c1, c2 ,. . .,  ck we can pair each of c1, c2 ,.. . ,  ck into k/2 pairs, 

say, (c1, c2),..., (ck−1, ck), such that 
k/2 k 
  

S(c2j−1 ∪ c2j ) ≤ 
    

S(cj ) + k2ki +1. 

Time taken for the pairing is O(k log(n)). 
 

Proof. From the definition of the star, spans a connected component in . So, there exists an edge in 

j =1 j l 

vl ∈ cl. 

Observation 4.6. 

S(cm ∪ cn) ≤ S(cm) + S(cn) + PathLength  vm
r , vn

r  , 

where PathLength(vm, vn) is the length of the path between vm and vn in the λ-MST. 

 

Observation 4.7. 

PathLength  vm
r , vn

r  ≤ PathLength(vm, vn) + 2 × 2ki . 

This follows from the fact that both the edges (vm
r , vm) and (vn

r , vn), which appear at the two ends of the path from 

vm
r  to vn

r , are of length at most 2ki . 

Since, c0 spans a connected component in Gi+1 , which is a sub-graph of the λ-MST, so c0 spans a tree in Gi+1 . 

Each of vl  is contained in c0. Use Lemma 4.3 to pair each vl , using the tree spanned by c0 in Gi+1 . Without losing 

generality, we assume that the pairing is (v1, v2), (v3, v4),...,  (vk   1, vk). Then, since the paths are edge-disjoint, we 

get the following result: 

k/2 

PathLength(v2j−1, v2j ) ≤ S(c0). 

j =1 

Using Observations 4.6 and 4.7, we obtain 
k/2 k 
  

S(c2j−1 ∪ c2j ) ≤  
    

S(cj ) + S(c0) + k2ki +1. 

Also, from Lemma 4.3, time taken in pairing vi ’s is O(k log n). This is the time taken in pairing ci ’s as well. This 

proves Lemma 4.4. □ 

Armed with Lemma 4.4, we now describe the procedure to merge a star. We use the following procedure to merge 

the leaves of the star. 

 

Merge-Star( c0, c1, c2 , . . . ,  ck ). The procedure works in iterations. In each iteration, we try to merge a star. At the 

end of each iteration, we are left with a star with lesser (roughly half) number of leaves than we had at the beginning 

of the iteration. The center of the stars in each iteration remains c0. 
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k 

 
= 
 ∈

 

2 

• ∈ V { }⊂ \V 

|V| | | 
• V 

∈ } 
• { | ∈ ∧ ∃ ∈ ∈ 

2ki     
= O 

k2ki     
+
 

1+ε rmin(v) 2ki 

Let s1, s2, . . . , skr be the leaves of the star to be merged in the current iteration. Here k
r
 is initialized with k, and 

si ’s are initialized with ci ’s. 
 

• If (k
r
 = 1), then merge the only leaf with the center of the star and exit. 

r
 

• Use Lemma 4.4 to pair up the leaves of the star. Without loss of generality, the pairing is (s1, s2), . . . , (skr−1, sk ). 
• Merge the clusters in a pair. 

• Repeat the procedure with 

k
r
 ← k

r
/2 

and 

{s1, s 2 , . . . ,  }← {s1 ∪ s2, s3 ∪ s4, ..  .}. 

(Note that this is again a star.) 

 
Lemma 4.5. A star of phase i with c0 as center and c1, c2 , . .. ,  ck as leaves can be merged by adding a set of 

clusters W,  such that 

S(v) 
 

 

  
S(c0)   S(cj ) 

  
 

 

  
Also, the time taken in the merging of the star is O(|W | log n). 

The proof is described in Appendix A. 

 

4.6.2. Merging of a connected component of Hi 
Now that we know how to merge a star, we describe how to merge a connected component of Hi . Let that compo- 

nent be C. Let D    c  C c where c is a star. In the following procedure to merge the components, A denotes the set 

of clusters yet to be merged. It is initially assigned the value C. 

 

Merge-Component. 

 

• If |A| = 1, then there is nothing to be done. 

Define  T 
r
 to  be  a  tree,  with  vertex  set  A  and  edge  set  as   (c1, c2)    c1, c2 A (u1, u2) Gi+1,  u1 c1, 

u2 c2 . (Note that this graph is always a tree.) 

Find a minimum vertex cover of T 
r
. Note that the smallest vertex cover of a tree has size at most half the size 

of the tree ≤ 1 A . 

For each cluster c0 , we have a set of clusters   c1, c2 ,. . .,  ck A , directly connected to it (in other words 
covered by it). 

 
Observation 4.8. c0, c1 ,. . .,  ck form a star with c0 as center and c1, c2, . .. ,  ck as leaves. 

 
Use the vertex cover V to partition A into stars. Since, each star is centered around a vertex of the vertex cover, 

the number of stars is |V|. 

• Merge the stars using the procedure referred to in Lemma 4.5. After the merging, number of components left is 

|V | ≤ |A|/2. So, we have reduced the number of components from |A| to at most |A|/2. 

• Repeat the procedure with A replaced by set of merged stars. 

Lemma 4.6. It is possible to merge a connected component C of Hi by adding a set of clusters W, such that 

  
log 

 

 

rmax(v) 
= O

 

α × 
S(
 

c∈C c) 
 

.
 

Time taken is O(|W | log(n)). 

v∈W 

k2ki 
j =1 v∈W 

log k + k log . 
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= 

2t 

  ∪  

2t 

2t 

k 

j j 
≤ 

j j 
≤ 

j 

2t    j =1  

2ki k 

k2ki     
+
 

j =1 j =1 

The proof is described in Appendix A. 

The proof of Lemma 4.2 follows by using the bound of Lemma 4.6 on each of the connected components of Hi 

and then adding the contributions. This completes the proof of Lemma 4.2. □ 

Appendix A 

 
Proof of Lemma 4.5. Since in each iteration of the merge-star procedure, the number of leafs decreases by a factor 

of two, so in the iteration t , k
r
 = k . 

Observation A.1. In the tth iteration, 

k
r
 

k 
. 

2t 

 
Also from the Lemma 4.4, in each iteration, the sum of the rmax values of clusters increase by at most S(c0) 

k2ki +1. So, we get the following observation. 

Observation A.2. In the tth iteration, 
kr k 
  

S(sj ) ≤ 
  

S(cj ) + t 
 
S(c0) + k2ki +1

 
. 

Observation A.3. Time taken in the tth iteration is O( k log(n)). This follows, from the fact that, in the merging 

algorithm, pairing up of the clusters takes O(k
r
 log(n)) time and merging takes O(k

r
) time. Since, in the tth iteration, 

k
r
 ≤ 2k/2t , so the time taken is O( k log(n)). 

Now, the contribution of set of clusters that are added in the t th iteration is given by 

kr/2 

log 
S(s2j −1     s2j )

.
 

2ki 
j =1 

Using weighted Geometric mean ≤ weighted arithmetic mean, 

kr/2 

 

 

S(s2 −1 ∪ s2 ) 1 
 

  

  
 k

r/2  
S
 
s2j −1 ∪ s2j 

  
 

 

  
Using Observations A.1 and A.2, we get for the t th iteration 

kr/2 
S(s2 −1 ∪ s2 ) k  

 

  

.k
=1 S(cj ) + tS(c0) + t 2ki +1   

 

 

So the total contribution is 

     k  
 

  

.k S(cj ) + tS(c0) + t 2ki +1   

It is easily shown that this is 

  
S(c0)   S(cj ) 

  
 

 

  
Also, adding time taken in each iteration from Observation A.3, we find the total time taken to be O(k log n). This 

proves the Lemma 4.5. □ 

k2ki 
j =1 

2t −1 
t 

2ki k 2t −1 2ki 

kr2ki 

j =1 
2 2ki 

j =1 

+ 

  

  

log k
r
 log . 

j =1 

log log 2t . 

log . 

O k + k log . 



       ISSN 2347–3657 

    Volume 11, Issue 1, 2023 

 

 

  

145 

 

| | | | 

2ki |C| 

log1+ε  rmin(v) 
= O 

1+ε rmin(v) 
r 2ki 

. 

1+ε rmin(v) 2ki |A| 
v∈W 

 

Proof of Lemma 4.6. Consider any iteration of the procedure. Suppose, crs is the sth cluster of the rth star of A. 

Suppose, hr is the number of clusters in the rth star. 

Then, from Observations 4.4 and 4.3 and Lemma 4.5, we get—we can merge all the stars created in this iteration 

by adding a set of clusters W , with 

 

rmax(v) 
 

 

S(v) 
 

 
 

  

  
 hr

 

 

  

S(crs) 
   

 
 

 

From (geometric mean ≤ arithmetic mean), we get 

  
log 

 

 

rmax(v) 
= O

  

α

         
h

 
 

 
+ 

   
h  

 

log

 .
rs S(crs) 

   

.

 

 

  

Clearly, 
.

rs S(crs) ≤ S(D), and 
.

r hr = |A|. So, this gives 
  

log 
rmax(v) 

= O

 

α

 

|A| + |A| log

  
S(D) 

   

. 

Now, in each iteration A reduces by at least a factor of two. Initially, it is C . So, the total contribution from all 

the clusters added in all the iterations is 

O

 

α|C|

 

1 
1 1 

  

1 + log

 
 S(D) 

   

+ α|C|

 

1 + 
log 2 

+ 
log 4 

+ · · ·

  

 
+ 

2 
+ 

4 
+ · · ·  

2ki |C| 2  4 

= O

 

α

 

|C| + |C| log

 
 S(D) 

   

. 

Now, in the sub-graph spanned by D, there are |C| − 1 edges of length between 2ki   and 2ki +1. So, from definition 
of S(D), |C| ≤ S(D) . Also, |C| log(  S(D) ) is O( S(D) ). So, total contribution is O(αS(D)/2ki ). 

2ki 2ki |C| 2ki 

The time taken in kth iteration is easily seen to be |A| log(n) (using Lemma 4.5). Since, in the kth iteration, |A| ≤ 
|C|/2k , so total time taken in all the iterations is O(|C| log(n) + |C| log(n)/2 + |C| log(n)/4 + · · ·) = O(|C| log(n)). 
This proves Lemma 4.6. □ 

Appendix B. Constructing an approximate MST 
 

Two methods were outlined by Har-Peled for estimating MSTs. Building a 1 δ-MST requires an amount of time equal to Od (n log(n) 

n). Well Separated Pair Decomposition by Callahan Kossaraju is employed. In addition, he provides a method for building a nd-MST 

that uses O(n log(n)) time. The first method may be used to build a 2-MST that will serve our needs.  

Instead of using WSPD, we may build a λ-MST by utilising the methods outlined in this study. This is the way it is done. 

 

(1) Apply the Har-Peled method to construct nd-MST T1 of P. Just so you know, WSPD is not being used here.  

 

(2) Create an estimate of ε μ for Voronoi Diagram V using the methods outlined in this article and T1. It would consume space of 

order O(n log n).  

 

(3) The Delaunay graph of a Voronoi diagram (or approximation Voronoi diagram) is defined as a graph over the diagram's sites, 

where edges between points p1 and p2 are defined as cells of p1 and p2 sharing a border, if and only if this formula is true. Define V 

and build its Delaunay graph F.  

 

G's MST is equal to the 1 + 3μ-MST of the set P of points.  

 

The evidence rests on the fact that an approximation MST is included in an approximate Delaunay graph. When dealing with accurate 

MST and Delaunay graphs, this may be translated into a comparable outcome. To show this, we will show that for any cut (P1, P2) in 

P, there is an edge (p1r, p2r) in the Delaunay graph where the distance between the two edges is at most  

The distance between points P1 and P2 is (1 + 3μ).  
 

 

r r r v∈W 

hr 2ki 
hr + hr log 

r 

α 
2ki 

v∈W v∈W 

α log = O 

s=0 

. 

r 
hr 
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∈ = 

  
∈B 

 

 
 

Fig. 5. A cut in an approximate MST. 

 
Proof. Suppose, p1, p2 be the points such that pi   Pi and dist(p1, p2)   dist(P1, P2). Consider the ball b(C, r) with 
p1, p2 as diameter (Fig. 5). It is easy to show that no point of P is contained in b(C, r). Consider all the Voronoi cells 

that intersect the ball b(C, εr). Observe that those cells cannot all correspond to one of Pi . So, there is a point (say 

q
r
) in b(C, εr) which lies at the boundary of two Voronoi cells, one of them corresponding to a point in P1 and other 

to a point in P2. Let these points be p1
r and p2

r . So, both p1
r and p2

r are ε-nearest neighbor’s of q
r
. So, dist(q

r
, pi

r ) ≤ 
(1  + ε) dist(q

r
, pi).   Using   this   and   from   geometry,   we   get   dist(p1

r , p2
r )  ≤  dist(p1

r , q
r
)  + dist(p2

r , q
r
)  ≤ 

(1 + ε)(dist(p1,q
r
) + dist(p2,q

r
)) ≤ (1 + ε)(r + rε + r + rε) ≤ (1 + ε)2 dist(P1, P2) ≤ (1 + 3ε) dist(P1, P2). Since 

there is an edge in the Delaunay graph between p1
r andp2

r , the result follows.    □ 

Appendix C. Hierarchical clustering for construction of PLSBs 

 

Similar to Har-Peled's [11] method, our PLSB creation strategies rely on a hierarchical clustering of the point set. The 

main difference between both approaches is in the construction of the hierarchical clustering, but otherwise, the concepts 

are same. To begin, we have the discrete points that make up the hierarchical clustering's leaves. Each stage involves 

merging two clusters according to a different metric for "proximity" between them. Each of these groups has a delegate 

who will lead the construction of a set of balls. You may utilise these balls to find the cluster that has a point that is 

almost closer to your query point. The representation that the ball holding the query point is built around determines this. 

You don't need to build extra balls to differentiate between the closeness of the query point to points in the two clusters 

when it's far enough away from both to report a point from either cluster. The procedure is carried out until every point 

has been combined into one cluster.  

The balls in the PLSB issue are the set of all the balls made in this way. 
 

C.1. Answering PLSB using compressed quadtree 

 
D An effective data structure for solving a PLSB issue was outlined by Har-Peled [11] as follows: after estimating the balls 

using axis-parallel cubes taken from a meticulously built hierarchical grid, a quadtree search tree was built over these cubes. 

An overview of the data structure is provided below.  

Here we have a PLSB issue using m balls. Our goal is to build a data structure that efficiently finds the smallest ball that 

contains a query point q and reports it. A hierarchical grid of cubes is used to approximate the balls (Fig. 6). 

The equation (u) represents the division of d into a uniform axis parallel grid with the origin as its centre and side length 

equal to 2 log u for a real value u. Changing u's value yields a space-covering multi-resolution grid.  

 

Now think of an r-radius ball with a centre at point p, denoted as b = B(p, r). A collection of cubes of the grid G(r/εd) is 

denoted as GC(b, ε).  

 

 

• bε is an ε-approximation to b; and 

• |GC(b, ε)| = O(1/εd ). 

Now consider B. Using the technique described above, one can derive a set GC(B, ε) = b GC(b,  ε) 
of O(m/εd ) cubes from the axis-parallel hierarchical grid that ε-approximates B. There is also one “infinite” cube, 
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Fig. 6. ε-PLSB data structure. 

 
it encompasses the whole area. When the query point is distant enough from P that any point x P is an ε-closest 

neighbour to the query point, this backdrop cube is used to answer ε estimated nearest neighbour queries.  

Keep in mind that the smaller cube, or the cube that corresponds to the smaller ball, always takes precedence whenever 

two or more cubes from different balls intersect. 

This collection contains all the cubes that were created. The cubes may be kept in a quadtree and used to answer point-

location queries among the prioritised cubes since they are all obtained from a hierarchical grid representation of d. 

Areas that make up the compressed quadtree may be either cubes with the same axis or the annulus, or difference, of two 

cubes that are within each other. The areas encompass space and are not connected to one another. In addition, there is a 

ball that corresponds to each zone. If there is any overlap, the area is linked to the smallest ball. The conventional 

algorithms allow for the computation of in O(log n) time. The data structure from [10] may be used to preprocess the 

leaves of for point-location. The time required to answer a point location query for a point q is thus O(log |Q|) = O(log 

(m/ε)).  
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