
 

 

  



       ISSN 2347–3657 

    Volume 11, Issue 1, 2023 

 

 

              

90  

 

What can machines learn about heart failure? A systematic 
literature review 

 

Mrs. D. HemaMalini, Dr. J. Thilagavathi, Mrs. S. Chandra Priyadharshini, Mrs. A. Baranishri  

Professor 2 Assistant Professor 1,4 Associate Professor 3  

hemamalini.d@actechnology.in,  thilagavathi@actechnology.in,  chandrapriyadharshini.s@actechnology.in,  

baranishri.a@actechnology.in 

Department of AI & DS, Arjun College of Technology, Thamaraikulam, Coimbatore-Pollachi Highway, 

Coimbatore, Tamilnadu-642 120 

 

Abstract 

 

With the goal of producing a synthesis of pertinent findings and a critical evaluation of methodologies, applicability, and 

accuracy to guide future research in this area, this paper offers a systematic literature review pertaining to the application of 

data science and machine learning (ML) to heart failure (HF) datasets. The purpose of this work is to explore potential 

solutions to the problem of minimal implementation of ML methods in clinical practice. Scopus (2014–2021), ProQuest 

(2014–2021), and Ovid MEDLINE (2014–2021) were the databases searched for literature. Heart failure, cardiomyopathy, 

and data analytics, mining, or data science were among the search phrases. The evaluation included 81 out of 1688 articles. 

Retrospective cohort studies constituted the bulk of the research. Across all investigations, the median size of the patient 

cohort was 1944, with a range of 46–93,260. Prediction models for readmissions used the biggest possible patient samples, 

with a median of 5676 (min. 380, max. 93260). Common heart failure (HF) challenges that machine learning algorithms have 

attempted to address include: HF identification from existing datasets, HF mortality prediction, hospital readmission 

prediction after index hospitalisation, HF cohort classification and grouping into subgroups with unique characteristics, and 

HF therapy result prediction. Logistic regression, decision trees, random forests, and support vector machines were the most 

popular ML algorithms. Data about the verification of models was limited. There was a median ratio of 3:1 between IT 

experts and doctors, according to the authors' affiliations. Medical and IT experts worked together to write more than 50% of 

the research. Information technology experts who did not consult with clinicians before writing 25% of the publications. 

Classification models that aid in assessing the outcomes of HF patients were developed by the application of ML to datasets, 

namely clustering algorithms. Nevertheless, the prospective value of ML models in clinical practice is sometimes 

exaggerated. Designing randomised controlled trials (RCTs) using ML as an intervention arm is the next step for this field of 

study to prospectively evaluate these algorithms for practical clinical usage.  
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1 Introduction 

Cardiovascular disease (CVD) is the leading cause 

of death in the United Kingdom (UK) [1] and 

worldwide [2]. Advances in pharmacotherapy and 

invasive strategies have resulted in the increased 

survival of patients with acute coronary syn- 

dromes (ACS), leading to the increased 

prevalence of heart failure (HF) [3,4]. There are 

approximately 920,000 peo- ple in the UK living 

with HF and around 200,000 new HF diagnoses 

each year [5]. HF causes approximately 5% of  

 

all emergency adult hospital admissions [6] and it 

accounts for approximately 2% of total NHS 

expenditure [6]. HF is a complex condition affecting a 

wide spectrum of the popula- tion [6] and in order to 

provide credible characteristics of the group of 

patients with HF, a reliable data collection process 
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must be met. With the advent and widespread use of EHR, there 

has been a surge of interest in cardiovascular health data and new 

avenues for translational research [7]. Thirty percent of the world's 

digital data comes from the healthcare industry. Healthcare systems 

might become "self-learning health systems" [9,10] with the 

utilisation of digital clinical data. The elderly, the weak, and those 

with several co-morbidities are usually not left out of observational 

cohort studies based on data extracted from electronic health 

records (EHR), in contrast to clinical trials [11]. Clinical practice 

and patient outcomes may be improved by research into health 

data, particularly for patient populations who would not have been 

included in clinical trials otherwise. This was seen in Sweden, for 

instance, when, in response to findings from the Swedish Heart 

Registry-SWEDEHeart, a shift occurred in the prescription of 

antiplatelets [11]. Big data analytics are starting to create a name 

for themselves in the healthcare industry, and governments and 

lawmakers are starting to take notice [12]. The use of artificial 

intelligence (AI) in healthcare is being considered by a growing 

number of nations [12]. The British government's plans to address 

the needs of all people using the National Health Service (NHS) via 

the use of digital data and technology were laid out in a policy 

statement that was released in October 2018 [13]. A key component 

of this strategy was the idea that all healthcare organisations' boards 

should be well-versed in the ways in which data and technology 

may inform the direction and delivery of services. The National 

Health Service (NHS) was able to seize control of its organisations' 

digital maturity thanks to this paper. The new standard was going to 

be innovators and the NHS working together, co-developing, and 

iterating [13]. The government of the United Kingdom is 

supporting the Digital Fellow Programme to help meet this need by 

teaching clinical workers digital skills [14]. Following the release 

of this policy, the government released "The Topol Review: 

Preparing the healthcare workforce to deliver the digital future," a 

document outlining the plans for the National Health Service 

(NHS) in the age of digital technology. Educating and educating 

healthcare workers to provide the digital future is the focus of the 

Topol Review, which is headed by Dr. Eric Topol, a cardiologist, 

geneticist, and cyber medicine researcher. A Review Board and 

three Expert Advisory Panels were constituted by Dr. Topol [15]. 

Data analytics will be the backbone of the NHS workforce of the 

future, according to the Topol study. Given the growing number of 

HF cases and the general fascination in applying ML to health data, 

we provide a literature overview of research that has used ML to 

examine datasets related to HF. This study aims to get a better 

understanding of how ML might enhance the present clinical 

practice and treatment of HF patients. 

 

2 Outline of the paper 

This systematic literature review is comprised of eight sec- tions. 

Section 1, Introduction, outlines the rationale for the review. 

Section 3 provides a summary of the previous litera- ture reviews 

undertaken in the field of HF and ML. Section 4, Material and 

Methods, provides the search criteria, scope notes for the search 

criteria and inclusion and exclusion crite- ria. In Sect. 5, Results, we 

describe the common HF problems addressed by ML in the 

reviewed papers, general character- istics of the studies, such as 

sources of the datasets, sample size, types of variables used in 

studies, management of miss- ing data, ML algorithms used and 

their performance. This section considers how gaps in the field 

have been addressed in recent years and the impact of ML on the 

progress of HF problem solving. In Sect. 6, Discussion, We 

discuss the role of predictive models in international HF 

guidelines. In Sect. 7, Gaps and Research Opportunities, we 

discuss the direc- tions for further research in ML and HF, as well 

as the need for development of models using modern HF patient 

cohorts and the standards for the reporting of studies using ML and 

AI in healthcare data. Section 8, Conclusions, provides a sum- 

mary of most important elements of the review and outlines the 

limitations of the review. 

 

 

3 Previous systematic literature reviews on 
ML and HF dataset 

There are previous systematic reviews presenting studies on 

ML and HF datasets. Rahimi et al. (2014) reviewed ML 

methods, discrimination, calibration and model validation 

methods of studies from 1995 to 2013 [16]. They concluded 

that risk prediction models have low uptake amongst clin- 

icians [16]. In support of this thesis, they cited the Postal 

Survey of Physicians attitudes to implement cardiovascular 

prediction rules [17]. Tripolity et al. (2017) reviewed HF 

classification models from 2000-2016 [18]. They observed 

that in most cases researchers focused on two or three-class 

classification problems of HF severity [18] even though eti- 

ology and symptoms of HF are more complex and can not be 

fully addressed by answering dichotomous questions. Alba 

et al. (2013) reviewed the mortality prediction models of 

ambulatory patients with HF [19]. They observed that out of 

32 studies, only 5 studies (15%) were validated in an inde- 

pendent cohort of patients [19]. The lack of validation on 

external datasets made it impossible to evaluate how well 

the models would generalise in a real-world clinical setting. 

Mahajan et al. (2018) reviewed predictive models for identi- 

fying the risk of readmission after index hospitalization for 

HF and suggested that more work needs to be done for cal- 

ibration, external validation, and deployment of predictive 

models to ensure suitability for clinical use [20]. Bazoukis 
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et al. (2020) included studies using data from heterogeneous 

sources - clinical trials, data from cardiopulmonary exercise 

stress tests, left ventricular assist device (LVAD) and cardiac 

resynchronisation therapy (CRTP) [21]. They performed a 

quality assessment of the ML studies using a novel score 

proposed by Qiao [22]. They concluded that ‘at the moment 

ML could not replace clinical cardiologists’, which was pre- 

ceded by disclaimer that analysis of healthcare data with ML 

techniques still act as an auxiliary decisional role [21]. 

 

 

4 Methods 

4.1 Identification of studies and literature searches 
 

We conducted our literature review in November 2019 

and revised it in February 2021. The papers that were 

considered for inclusion in this literature review were 

evaluated using the PRISMA framework, which is a 

systematic review approach. The flow diagram of the 

procedure for identifying the articles included in this study 

is shown in Figure 1. Once duplicates were removed from 

the original search, 1688 research remained out of 2679 

publications published between 1/2014 and 2/2021. The 

title and abstract filter eliminated 1,497 papers out of 

1,688. Full text analysis was applied to 191 studies. During 

the full-text screening, 110 studies were not included. For 

both the qualitative and quantitative analyses, 81 studies 

were considered. MEDLINE, SCOPUS, and ProQuest All 

of the Ovid databases were searched using the following 

terms: ("heart failure" OR "cardiac oedema" OR 

"paroxysmal dyspnoea") AND ("machine learning" OR 

"data mining" OR "data analytics" OR "data science"). 

Myocardial failure, heart failure with reduced ejection 

fraction (HFrEF), heart failure with preserved ejection 

fraction (HFpEF), decompensation, heart decompensation, 

congestive heart failure, left-sided heart failure, right-sided 

heart failure, left-sided and right-sided heart failure, and 

cardiac failure are all included in the phrase "heart failure" 

scope note. Cardiomyopathies are a group of diseases 

characterised by the involvement of the cardiac muscle. 

They are classified according to the predominant 

pathophysiological features or theiretiological/pathological 

factors, such as alcoholic cardiomyopathy, endocardial 

fibroelastosis, primary and secondary cardiomyopathies, 

primary and secondary myocardial disease, and restrictions 

on the heart muscle itself. "Machine learning" is defined as 

follows by the SCOPUS database: "an artificial 

intelligence (AI) technique that allows computers to 

autonomously begin and execute  

- 

cute learning when exposed to new data. The scope note for 

“machine learning” includes: machine learning and trans- 

fer learning. Data science is defined as “an interdisciplinary 

field involving processes, theories, concepts, tools, and tech- 

nologies, that enable the review, analysis, and extraction of 

valuable knowledge and information from structured and 

unstructured (raw) data” [24,25]. The scope note includes 

data analytics, data driven science and data science. A search 

limit was applied to include original articles and confer- 

ence papers published in English. The titles and abstracts of 

full-text articles were screened for suitability after applying 

inclusion and exclusion criteria. 

 

4.2 Inclusion and exclusion criteria 
 

Inclusion and exclusion criteria were agreed between clini- 

cians and data scientists. Clinicians defined the most relevant 

aspects of heart failure (HF) identification, detection and 

diagnosis in the context of the application of machine learn- 

ing (ML) to electronic health records. Selected studies used 

ML techniques to analyse HF datasets to predict the following 

outcomes: worsening of a clinical condition, readmission to 

hospital, onset of illness, classification of HF stage accord- 

ing to symptoms reported by patients, classification based 

on the HF etiology, HF mortality, response to introduced 

HF treatment. Included studies were published from 2014 

until February 2021 (inclusive). Included studies applied 

ML to the range of medical datasets of HF patients, i.e. 

electronic health records (EHR), datasets from primary or 

secondary care, open access HF data sets and reposito- 

ries with data from patients with cardiovascular disease. 

We excluded studies whose primary focus was the analy- 

sis of: ECG signals of HF patients, echocardiographic video 

loops, biobank datasets, image repositories and image signals 

from CMR and PET, histology and pathology datasets from 

cardiomyopathy cases, the ECG signals and results of the 

cardiopulmonary exercise stress test (CPEST), data from car- 

diac resynchronisation therapy devices (CRT, CRTP, CRTD), 

data exclusively from extra-corporal life support (ECLS) like 

blood parameters. Studies were excluded if they exclusively 

included mobile health and telehealth datasets of HF patients, 

health claim databases and healthcare cost analysis related to 

HF cohorts. Studies using natural language processing (NLP) 

and text mining techniques as the only means to interrogate 

the HF dataset were excluded. We excluded studies which 

focused on the analysis of health record access patterns whilst 

not analysing the health records themselves. Theses, reviews, 

book chapters, editorials, letters, conference abstracts with- 

out full text and non-English articles were excluded. A data 

extraction table was used to record features of interest from 

each study, including study quality indicators. Predefined cri- 

teria and its details are listed in a supplementary material. 
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Fig. 1 PRISMA flow diagram of the identification process for articles included in this review. PRISMA = preferred reporting items for systematic 

reviews and meta-analyses; Adapted From: Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. [23] 

 

5 Results 

5.1 Common HF problems addressed by ML 
 

At the outset of the Results section, it is useful to outline 

common issues in HF that require attention of healthcare 

providers. For years clinicians have tended to focus upon 

providing effective care to HF patients, however the interest 

of data scientists to provide solutions to this domain creates 

the opportunity to improve HF services by employing ML 

to address common HF problems. HF is a complex clinical 

syndrome and due to the shear volume of specific problems 

associated with this syndrome the inclusion criteria were 

employed to narrow the focus of studies to those working 

with clinical and administrative HF datasets. This review is 

focused upon the ways in which EHR, clinical and adminis- 

trative data can reveal correlations within patient data that 

inform both research and clinical practice. Therefore this 

review will not focus upon studies analysing ML applica- 

tion to electrocardiogram (ECG) nor cardiac imaging. The 

extensive research into electrocardiogram (ECG) signal pro- 

cessing and ECG interpretation has been recently synthesised 

in the state-of-the-art systematic review of application of 

deep learning to the ECG [26]. Somani et al. (2021) provide 

an overview of deep learning application to ECGs, its bene- 

fits, limitations as well as future areas for improvement [26]. 

We recognise however that areas of cardiology where ML and 

AI solutions have been successfully applied to ECG analy- 

sis and cardiac imaging which has resulted with the FDA 

approval in clinical settings. This is exemplified by soft- 
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Table 1 Outcomes examined in the studies included in the literature review. N - number of studies, % out of 81 studies. *Other - modelling of the 

response to HF treatment, reduction of HF data dimension 
 

Outcomes of studies N/% Citations to studies 

Detection of HF onset 25 (31%) [29–53] 

Mortality prediction 20 (26%) [54–73] 

Prediction of readmission to hospital 18 (21%) [74–91] 

Classification of HF (according to NYHA class or aetiology) or clustering 11 (13%) [92–102] 

Other: * 5 (6%) [35,62,103–106] 

 

ware to automated ECG interpretation and reporting, deep 

learning enabled heart function analysis of cardiac magnetic 

resonance (CMR) images and ECHO imaging [27]. Cardiac 

imaging is a broad and well established sub-speciality of 

cardiology. As with the case of ECG, we refer readers to 

the systematic review by Dey et al. (2019) which provides 

insight into AI application to cardiac imaging [28]. Below 

we list common problems within the heart failure domain 

addressed by ML application to electronic health records: 

 

1. HF detection and diagnosis from electronic health records 

or administrative data. 

2. Prediction of HF readmission to hospital (30-day, 60-day, 

3-month, 6-month readmission since the index hospitali- 

sation). Studies within this domain problem focused upon 

grouping patients according to the readmission risk. The 

search for the accurate prediction of HF readmission is 

likely influenced by incentive programs in the USA that 

record readmission rates in the annual payment update by 

the insurance company Medicare. 

3. HF mortality prediction based on patients’ current clin- 

ical status, results of routine blood tests (biomarkers), 

non-invasive cardiac imaging - echocardiogram (ECHO), 

magnetic resonance imaging (MRI), myocardial perfu- 

sion scan (MPS) and invasive tests such as cardiac 

catheterisation to assess pressures in heart chambers, and 

coronary angiogram and intravascular ultrasound (IVUS) 

- to assess coronary artery plaque volume and composi- 

tion. 

4. HF classification applied in line with already known HF 

categories, based on patients’ symptoms such as New 

York Heart Association (NYHA) and based on the type of 

HF derived from international HF guidelines such as clas- 

sification according to the functional assessment of left 

ventricle by calculating ejection fraction (LVEF). Distinct 

types of HF would include HF with reduced EF (HFrEF), 

HF with mid range EF (HFmrEF) and HF with preserved 

EF (HFpEF). 

5. HF classification using unsupervised ML methods in 

order to discover new phenotypes of HF patients, not 

described today based on the above criteria. 

6. Prediction of the outcomes and response to invasive 

therapies like implantable cardiac devices: implantable 

cardioverter defibrilator (ICD), cardiac resynchronisa- 

tion therapy (CRTP/D) and left ventricle assisted devices 

(LVAD). 

 

In this review, we grouped studies according to the spe- 

cific HF problem which they aimed to address. Based on 

this approach we produced a taxonomy of common HF 

problems investigated by ML applied to HF datasets. Table 

1 presents references to studies grouped according to the 

domain problem that they attempt to solve. In Fig. 2, we 

present a taxonomy of the common HF problems and which 

ML methods were applied to solve those problems. 

 

5.2 General study characteristics: variables, source 
and size of datasets used. 

 
All 81 studies were retrospective, observational or cross- 

sectional cohort studies. HF datasets comprised a mixture of 

continuous and discrete variables. Most studies used either 

structured or unstructured data, though some studies inte- grated 

both and described it as a novel approach in their data analytics. 

Clinical and administrative features were consid- ered, as listed in 

Table 2. The most common source of HF patient data used for 

analysis in reviewed studies was an extract from Electronic Health 

Records (EHR) of large clin- ical centers, university hospitals, 

district general hospitals or community health centers. Several 

studies used registry data as in a case of Swedish national 

cardiovascular registry [55], acute HF registry enrolling patients 

from 10 hospitals across Korea [57], data from BIOSTAT-CHF 

project, which enrolled patients from 69 centres in 11 European 

countries between 2010 and 2012 to determine profiles of patients 

with HF that do not respond to recommended therapies [59], or as 

in a case of Frizell at al. (2017) study dataset was obtained by 

linking patients from the “Get With the Guidelines” Heart Failure 

registry with Medicare data from 289 hospitals in USA [79]. 

Blackstone et al. (2018) [73] aimed to develop a decision aid to 

aggregate adverse events in heart trans- plant and measure end 

organ function to inform clinical decision making. They used the 

Electronic Data Interface 
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Fig. 2 Taxonomy of the main 

problems within the HF domain. 

This Figure presents the 

common HF problems and most 

commonly used ML algorithms 

in addressing these specific HF 

domain problems. HF problems 

are colour coded and ML 

methods used in solving these 

problems are colour coded and 

listed in order of the most 

frequently used method for each 

particular domain problem. For 

each ML method used in the 

specific domain problem, there 

is a median AUC provided, with 

the performance range 

(min-max) achieved by ML 

model applied to the specific 

problem 

 

 

 

 

 

 
 

 

 

 

for Transplant (EDIT) database, updated by transplant coor- 

dinators during the course of clinical care and data from The 

Cardiovascular Information Registry (CVIR), a prospective 

registry of all cardiovascular procedures performed in Cleve- 

land Clinic, Ohio, USA. These data were supplemented with 

queries from EHR to resolve inconsistencies and impute the 

incomplete data. 

Several studies however used open-source cardiovascular 

data available from data repositories available in a public 

domain. Below we provide the web address to the open- 

source cardiovascular data repositories used in papers cited 

in this review: 

 

1. Cleveland Clinic Foundation Heart Disease Data Set from 

University of California Irvine (UCI) Machine Learn- 

ing Repository available on https://archive.ics.uci.edu/ml/ 

datasets/heart+disease 

2. MIMIC - III Medical Information Mart for Intensive Care 

from Beth Israel Deaconess Medical Center in Boston, 

Massachusetts available on https://github.com/MIT-LCP/ 

mimic-website 

 

Eleven studies [29–31] [34,37,38,50,84,92,105,107] used 

Heart Disease Data Set from the ML Repository of the Cleve- 

land Clinic Foundation and University of California, Irvine 

(UCI) [108]. This dataset was used by 8 out of 10 studies 

to develop a model to predict the onset of HF. Two studies 

developed the HF classification model. Apart from Cleveland 

Clinic repository, real-world datasets from Microsoft Azure 

research platform [59] were used and the publicly available 

MIMIC-III benchmark datasets from critical care databases. 

In case of multimodal data, including live and still imag- 

ing data and ECG signals, they are often stored on multiple 

platforms and due to the nature of the data (coded millions of 

pixels of still images, video loops). The process of integrating 

this information with clinical information readily available in 

HER poses a challenge. Patient data are fragmented and scat- 

tered across multiple silos, which would require integration 

prior to application of advanced data analytics. 

In Table 3, we list most commonly used variables utilised 

by cited authors in their final models. The most commonly 

used variables in mortality prediction models were (in order 

of most frequently used) (1) left ventricular ejection fraction 

(LVEF), (2) the presence of other clinical conditions (com- 

morbidities), (3) age and (4) renal function (as measured by 

serum creatinine level). In the group of HF classification into 

different types of HF or different stages of HF, the most com- 

monly used variables were (1) the presence of hypertension, 

(2) age, (3) gender, (4) presence of coronary artery disease, 

(5) blood tests (wide range of blood tests), (6) renal function 

tests (serum creatinine level and sodium level). In the group 

of HF onset prediction, the most commonly used variables 

were (1) age, (2) presence of diabetes and (3) hypertension. 

The number of variables used across all studies ranged from 
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Table 2 Examples of discrete and continuous data used in studies presented in the systematic literature review 

Discrete data Continuous data 

Demographics Physical examination: 

Age / Sex / Gender: Female/ Male Pulse Rate (beats per minute) 

Race: White, African American, Hispanic, American 

Indian,Native Asian 

Respiratory Rate (breath per minute) 

Medicare Insurance / Medi-Cal Insurance Systolic Pressure in mmHg 

Contacts with Healthcare/Care management: Body Mass Index (BMI) 

Discharge to Skilled Nursing Facility Body Surface Area (BSA) 

Missed Clinic Visits in Prior Year Blood tests 

ED and O/P Visits in Prior Year Biochemistry: 

Admission in Previous Year Serum B- Natriuretic Peptide (pg/mL) 

In-admission Telemetry Monitoring Glucose (mg/dL), 

Clinical data Fasting blood glucose >120 mg/dl 

Symptoms: Serum Creatinine (mg/dL) 

Types of chest pain, Breathlessness as per NYHA class Urea (mg/dL) 

Past Medical History: Serum Albumin (g/dL) 

Ischemic Heart Disease Cholesterol level 

Previous Myocardial Infarction Serum Sodium and Potassium (mEq/L) 

Previous Heart Failure Haematology: 

Type of Cardiomyopathy Haemoglobin (g/dL), Haematocrit (%) 

Coronary Artery Disease Additional tests 

Valvular Heart Disease ECG (recorded at rest) features 

Arrhythmias heart rhythm: sinus rhythm atrial fibrillation 

Cerebrovascular Disease/Stroke/TIA ORS width - broad or narrow 

Vascular/Circulatory Disease Exercise Stress Test (EST): 

Diabetes type I and II MPHR - maximum predicted heart rate 

Renal Disease or ESRD on Dialysis EST induced angina, ST segment depression, 

downslope of ST segment or upslope of ST 

segment 

Chronic Lung Disease/COPD/Asthma ECHO features 

Metastatic Cancer of solid organ or Acute Leukemia LVEF in % (left ventricular Ejection Fraction) 

Severe haematological disorder Right ventricular systolic pressure 

Liver Disease Pulmonary artery mean pressure 

Mental Disorder(s) Chest XRay features: 

Medication History Lung fields 

Social History: Alcohol Abuse, Drug Abuse, Protein Caloric 

Malnutrition, Functional Disabilities 

Cardiomegaly 

 
 

8 to 4205. Figure 4 shows the number of variables used in 

models applied to specific outcomes groups. The majority 

of authors reported the exact number of variables included 

in their model. A small minority provided neither the total 

number of variables nor any clear description of the variables 

used. 

Figure 3 shows the median size of the patient cohort exam- 

ined in studies. The largest patient samples were used in 

readmission prediction models with the median sample size 

of 5676 (min. 380, max. 93260), followed by mortality pre- 

diction models with a median sample size of 5044 (min. 95, 

max. 44886), followed by studies focused on classification 

of HF with median sample size of 853 (min 162, max 41713) 

and the smallest samples were used in HF prediction models 

with median sample of 439 (min 46, max 67697). 

 

5.3 Dimensionality of datasets 
 

The healthcare data are highly dimensional. Several studies 

reviewed aimed to reduce data dimensionality [50,105] in 

order to improve the performance of their algorithm. Models 

trained on datasets with many features and limited number 
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Table 3 Most commonly used variables and median numbers of variables used in final models in cited studies; all grouped by outcomes of the 

studies 
 

Study outcome Median number of variables Most common variables 
 

Detection of HF 14 (range: 13 - 1823) Age, presence of: diabetes, 

hypertension 

HF mortality prediction 45 (range: 8 - 1302) LVEF, comorbidities, age, renal 

function tests (creatinine, urea) 

HF classification 55 (range: 11 - 400) Hypertension, age, gender, 

coronary artery disease, blood 

tests, renal function tests 

Prediction of HF readmission 56 (range: 16 - 4205) Age, blood tests, comorbidities 
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Fig. 3 Patients’ sample size used in ML studies grouped by examined 

outcomes. (On each box, the central mark indicates the median, and the 

bottom and top edges of the box indicate the 25th and 75th percentiles, 

respectively. The whiskers extend to the most extreme data points con- 

sidered outliers, and the outliers are plotted individually using the ’+’ 

symbol. For better visualisation effect, 3 studies have been removed 

from the plot. Studies working on 93260 (HF Readmission), 67697 (HF 

Prediction) and 41713 (HF Classification) patients are not included in 

the figure.) 

 

 

of recorded observations for each variable are exposed to a 

risk of over-fitting. This leads to a reduction in the model 

performance when it is applied to an external dataset. In 

Fig. 6 we illustrated the relationship between sample sizes 

of all studies and number of variables used. Studies with 

sample size less than 10,000 patients achieved median AUC 

0.86, whereas studies with sample sizes greater than 10,000 

patients achieved median AUC of 0.814. We correlated the 

ratio between sample size and the number variables with the 

study performance as shown in Fig. 5c. While we would 

expect studies with smaller sample sizes to use a fewer num- 

ber of variables in order to improve algorithm performance, 

we did not observe much consideration of the dimension- 

ality aspect in reviewed studies. Surprisingly there was no 

correlation observed between the algorithm performance and 

sample size to number of variables ratio. Figure 7 shows the 

Mortality Readmission Prediction Classification 

Fig. 4 Number of variables used in ML studies, grouped by outcomes. 

(On each box, the central mark indicates the median, and the bottom and 

top edges of the box indicate the 25th and 75th percentiles, respectively. 

The whiskers extend to the most extreme data points considered outliers, 

and the outliers are plotted individually using the ’+’ symbol. For better 

visualisation effect, 4 studies were removed from this plot. Studies using 

4205 (HF Readmission prediction), 1823 (Detection of HF), 1302 (HF 

Mortality prediction) and 939 (HF Readmission prediction) variables in 

their model.)ratio of the number of variables to the 

number of patients included in the study grouped by 

the HF problem that they address. 

 

5.4 Handling of missing data 
 

Most real-world datasets contain missing values. This can 

cause issues for a number of ML methods [109]. The per- 

centage of missing values differed between studies. In many 

cases, the variables with missing values were removed from 

the dataset. For example, Sideris et al. (2016) excluded 

features corresponding to patient weight from their analy- 

sis because 97% of these values were missing [84]. They 

also removed information about the medical specialty of the 

admitting physician because this information was missing in 
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Fig. 6 Scatter plot illustrating sample size used in the ML study and 

variables tested in the same study. For better visualisation effect 2 studies 

using 4205 and 1823 variables in their model have been removed from 

this plot. Studies with smaller sample sizes, less than 10,000 patients 

and variable size less than 200 (Cluster A), achieved median AUC 0.86, 

whereas studies with sample sizes greater than 10,000 patients and vari- 

ables number less than 400 (Cluster B) had median AUC of 0.814. Blue 

arrow indicates a study which used 1302 variables. This study used 

multi-view ensemble learning based on empirical kernel mapping to 

predict HF mortality and achieved AUC of 0.89. Green arrow indicates 

a study, that used 939 variables to train neural network model to predict 

HF hospital readmission. This model achieved AUC of 0.77 
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Fig. 5 Representation of the ML model performance in relation to 

number of variables used, sample size and the ratio between sample 

size and number of variables. a Number of variables used in a study vs 

ML model performance. b Sample size used in a study vs ML model 

performance. c Ratio of the sample size to the number of variables used 

in the ML algorithm vs ML model performance. Least square regression 

line indicates negative correlation between model performance and the 

number of variables per patient in the sample cohort (R value 0.03) 

 

 

49% of cases. Similarly, information about the payer code 

was removed from the final dataset, because it was unknown 

for 39.5% of patients [84]. For Ahmad at al. (2018), over 

20% of missing data for a specific variable was enough 

to exclude this variable from the analysis [55]. Accord- 

ing to the authors, the most likely missing variables were 

laboratory values. They observed an impact on prognosti- 

cation and clustering when variables of known prognostic 

value were missing, such as B-natriuretic peptide (BNP) 

serum levels [55]. Chu et al. (2020) excluded patient sam- 

ples with more than 30% of missing values from the analysis 

[68]. The Cleveland heart disease dataset contains records 

of 303 patients with 76 attributes. From this dataset usually 

6 patients are removed in order to perform analysis [29– 

31,34,37,38,50,84,84,92,105,107]. Researchers worked on 

297 records without any missing values and tended to use 

13 key attributes [31]. A variety of approaches were used to 
600 
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Fig. 7 Box plots illustrating ratio between sample size and number 

of variables used in reviewed studies. (On each box, the central mark 

indicates the median, and the bottom and top edges of the box indicate 

the 25th and 75th percentiles, respectively. The whiskers extend to the 

most extreme data points considered outliers, and the outliers are plotted 

individually using the ’+’ symbol.) 

input missing data. Schrub et al. (2020) used the SVDimpute 

function within the impute package in R to impute the miss- 

ing data [100]. They report that the percentage of missing 

values ranged from 0% to 28% [100]. Kwon et al. (2019) 

in an acute HF mortality model also replaced missing data 

using data imputation [57]. They used patients’ most recently 

recorded values of the missing feature to complete variables 
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such as the vital signs, demographics, biochemistry results 

or heart scan features that were available in patients’ notes. 

Using this method Kwon et al. (2019), created a training 

dataset consisting of 12,654 datasets amplified from 2165 

patients. As a result, many training datasets were generated 

based on data sourced from the records of only one patient. In 

the opinion of Kwon et al. (2019) this dataset was sufficient 

for developing a deep-learning model to predict HF mortal- 

ity [57]. Their deep neural network algorithm achieved an 

AUC score of 0.880 [57]. Nonetheless, this model outper- 

formed both the American Cardiac Association “Get With 

The Guidelines’ (GTWG-HF) risk model and The Meta- 

Analysis Global Group in Chronic Heart Failure (MAGGIC) 

risk model for predicting 12- and 36-month mortality [57]. 

5.5 Overview of algorithms 
 

Table 4 presents all ML algorithms that have been employed 

within the reviewed studies. Some studies used more than 

one ML method; hence, the total number of methods used 

is larger than the number of studies included in the liter- 

ature review. Most commonly We observed an increase in 

the use of deep learning in tackling HF problems. Neural 

networks performed very well in predicting HF mortality or 

detecting HF from EHR. In the majority of the studies using 

neural networks, they outperformed traditional ML methods 

[56,68,70,72]. Hence, deep learning (DL) could potentially 

improve the accuracy of HF classification, detection, and 

outcome prediction. However, DL is typically applied when 

using image data (e.g. echocardiograms, CMR, CT) or ECG 

data (e.g. using CNNs or RNNs) but can also be used for other 

datasets, including text analysis. Moreover, the problem with 

DL models is that they lack explainability, hence there is 

a trade off between accuracy and explainability. Therefore, 

the adoption of DL in clinical practice can be challenging 

given the need for accountability. Hence, one could argue that 

traditional ML could be preferred given that some of these 

techniques can provide an insight into the rationale and logic 

behind the computer’s recommendation. Nevertheless, there 

is ongoing research that is investigating methods to explain 

DL models, for example using attention maps [110] which 

allow the user to see what features the DL algorithm focused 

on just before it produced its classification. 

 

5.6 Algorithms performance 
The comparison of algorithmic performance in studies con- 

sidered within the review is challenging due to each study’s 

performance being reported using variable ML evaluation 

metrics. Firstly, studies that used data from heterogeneous 

populations and models, have been trained on populations 

with different sample distributions and characteristics. Sec- 

ondly, studies were set to predict a number of different 

the results. Thirdly, writers included varying quantities of 

variables, and some even included a features selection 

procedure, to determine which predictors were most 

reliable. Quantitative comparison of examined models' 

realised performance is not possible due to the specified 

variability of research variables. As shown in Figure 2, 

which offers data on the range of performance of ML 

approaches used to the given issue, there is a taxonomy of 

frequent HF problems. Figure 2 shows a taxonomy of 

typical HF issues and details the performance range of ML 

approaches when applied to each problem. Research 

included in this study made use of a wide range of 

performance measures. F1 score, specificity, accuracy, and 

Area Under the Receiver Operating Characteristics 

(AUROC or C-statistic) were the most prevalent. In most 

cases, the writers looked at how well other models had 

done in similar research. Even though their model only 

outperformed the competition by a small margin under the 

ROC curve, there was a propensity to highlight that earlier 

models had done worse. Among the algorithms employed 

in research to forecast the start of HF and identify it, 

decision tree approaches, logistic regression, support 

vector machines, and random forest (RF) ranked highest. 

After RF (median AUC0.87) and SVM (median 

AUC0.83), Decision Tree (median AUC0.88) was the best. 

Studies attempting to forecast mortality most often used 

logistic regression, with RF and deep learning (neural 

networks) following closely after. Neural networks 

obtained the greatest median AUC at 0.870, followed by 

logistic regression at 0.805 and random forest at 0.848. 

Among the methods employed to predict hospital 

readmission, deep learning was the most popular, followed 

by logistic regression, support vector machines (SVMs), 

and RF. The top three methods for achieving median AUC 

were support vector machines (SVM) with 0.68, logistic 

regression with 0.655, and deep learning with 0.619. 

Research that attempted to classify HF made use of a 

number of clustering techniques, including decision trees, 

support vector machines, hierarchical clustering, K-means 

clustering, and K-Nearest Neighbour approach. Logistic 

regression remained the dominant technique for predictive 

models, even if ML approaches have become more 

popular. In spite of this, ML models outperformed their 

more conventional statistical counterparts. When compared 

to more traditional methods, such as regression models 

alone, ML models that include a number of extra variables 

tend to provide more accurate predictions of HF mortality 

risk [65]. 

5.7 Addressing previous gaps in ML 
 

Research into ML application to HF datasets evolved and 

brought some needed solutions to previously identified gaps 
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Table 4 Types of Machine 

Learning methods used in cited 

studies. N (%) number of 

models (% out of 81 studies) 

 
 

ML alghorithms N (%) number of (models 

(% out of 81 studies ) 
 

Supervised ML methods 

Logistic regression (LR) (15) (including Boosted 

LR, Regularised LR, Knowledge Driven Scalable 

Orthogonal Regression, Spike-and-slab regression, 

Multivariable regression, Stepwise LR, Ensemble 

LR) 

Decision Tree (including Decision Tree ID3 (10), 

Boosted Decision Tree (2), Boosted Regression 

Tree (3) 

22 (26%) 

 

 

 

 

15 (18%) 

 

Random Forest 14 (17%) 

Support Vector Machine (SVM) 12 (14%) 

Naive Bayes (NB) (including NB (5), Tree 

Augmented NB (2), Gaussian NB (1)) 

8 (9%) 

Deep learning  

Neural Networks (NN) (including Recurrent NN (7), 10 (12%) 

Convolutional NN (2), Deep NN (1)) 

Unsupervised ML 

Clustering Methods (including k nearest neighbour 

(6), k-means clustering (3), hierarchical clustering 

(1)) 

 

 

9 (11%) 

Selection Operator Models 1 

Feature Rankin Analysis 1 

 

 

in ML methods. Below we describe how recent studies 

addressed those unmet needs: 

1. Using synthetic data. Even though there is still wider need 

for improvement of validation methods, Xiao et al. (2018) 

[82] successfully used synthetic data as a validation cohort 

in their readmission prediction study. They used synthetic 

data as a benchmark for reproducing experimental results. 

After generating 3000 synthetic patients, they used syn- 

thetic data of 500 patients for validation, and another 500 

for testing. 

2. Using algorithms to tackle missing data. It has been 

noted that the omission of variables with a consider- 

able number of missing values should not be a routine 

approach in ML studies [111]. There has been an increase 

in using algorithms to address missing values such as 

multiple imputation techniques, rather than ignoring vari- 

ables from analysis. Blackstone et al. (2018) [73] used 

5-fold multiple imputation using a Markov Chain Monte 

Carlo technique to obtain final parameter estimates and a 

variance-covariance matrix to deal with missing variables. 

Mahajan et al. (2017) [78] used multiple imputation by 

chained equations re-sampled over five imputed datasets 

to fill in missing values for used variables. Jiang et al. 

(2019) [83] used simply mean imputation to impute miss- 

ing fields of important variables. The above-described 

methods of dealing with missing data allowed researchers 

 

 

to deal with the most difficult aspect of real-world data - 

missing values. 

3. Feature selection techniques. Another difficult aspect of 

real world data - high data dimensionality - was dealt 

with successfully, in number of studies. Wang et al. [67] 

in their HF mortality prediction systems applied Orthog- 

onal Relief (OR) algorithm to remove irrelevant and 

redundant features from the dataset. This approach sig- 

nificantly reduced the dimensionality of data and allowed 

researchers to successfully use the Dynamic Radius 

Means classification algorithm to predict mortality from 

HF. 

4. Improved ML execution time. Haq et al. [29] used fea- 

ture selection algorithms in their classification algorithm 

and not only the accuracy of the model increased but the 

execution time of the diagnosis system was significantly 

reduced. 

5. Use of ensemble models. In our review we observed a 

new trend to use multi-model predictive methods. This 

multi-model architecture can provide better accuracy than 

best model approach and it has been used successfully 

by research groups. Priyanka et al. (2016) [33] and Che- 

ung (2018) [76] proposed a novel hybrid model bridging 

multi-task deep learning and K-nearest neighbors (KNN) 

for individualised treatment outcome estimation in HF 

patients. This model achieved F1 score of 0.796 and out- 

performed state-of-the-art ML predictive models. 
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5.8 ML impact on advancing HF problem-solving 
In this review we highlight exemplary work presenting how 

ML and data analysis impacted HF problem-solving and have 

advanced the knowledge in this domain. 

 

1. Personalised medicine. Probably the most important 

advancement is an important role of ML in executing 

problems of the personalised medicine. Ahmad et al. 

(2018) [55], who worked on the SWEDEHeart registry 

data, presented potential clinical implications of their HF 

clustering study. They concluded that if clustering into 

distinctive HF phenotypes was embedded within EHR, 

they would ultimately create a self-learning healthcare 

system that could suggest a personalised therapy for spe- 

cific needs of individual patients [55]. Another good 

example is the use of deep learning in identifying the 

important factors which increase patient mortality. This 

could potentially help clinicians to augment their clinical 

decision and review planned interventions for HF patients 

[61]. 

2. Improving clinical trial design. Multiple studies using 

ML identified features carrying high predictive value in 

HF course, confirming what RCTs in HF with reduced 

ejection fraction (HFrEF) showed to date. There is an 

opportunity that advance data analytics of HF datasets will 

lead to identification of new features in the HF pathol- 

ogy, that could be targeted during future clinical trials. 

ML based clustering gives unique opportunity to identify 

distinct phenogroups of various types of HF, caused by 

different etiologies. HF with preserved EF (HFpEF) is a 

common type of HF, still poorly understood. Gu et al. 

[99] showed that there are 3 distinct cohorts of patients 

within a group of patients with HF with preserved ejec- 

tion fraction (HFpEF). Those cohorts are characterised 

by significant differences in comorbidity burden, underly- 

ing cardiac abnormalities, and long-term prognosis. They 

observed that beta-blockers or ACEi/ARB therapy was 

associated with a lower risk of adverse events in specific 

HFpEF phenogroups [99]. Again, this finding should be 

explored further and considered for validation in prospec- 

tive clinical trials. Ahmad et al. [55] suggested that ML 

has a significant role to play in improving clinical trial 

design and execution. 

3. Healthcare data quality and data integration. Liu et al. 

(2019) [91] proposed methodology and process on con- 

structing large-scale patient cohorts which allowed to 

form the basis for effective clinical case review and 

efficient epidemiological analysis of complex medical 

conditions. Ben-Asouli et al. (2019) [56] recommended 

that policymakers should allocate resources to promote 

projects that bring big data analytics closer to clinical 

practice. They concluded that there is an opportunity to 

improve patients’ outcomes by investing in comprehen- 

sive, integrated health IT systems and projects aimed at 

simplifying ML to clinical teams [56]. 

 

 

5.9 Authors affiliation and input from clinicians into 
ML studies 

 
All all, 514 writers contributed to this anthology. Among 

them, 297 writers had ties to the fields of computer science, 

information science, statistics, or anything closely similar. 

Two hundred thirteen writers had the designations of "MD" or 

"MBBS" and were associated with a healthcare facility. When 

looking at the ratio of writers with medical backgrounds to 

those from IT backgrounds, the average was 3:2. When we 

looked at the median number of IT specialists to medical 

doctors, it was 3:1, which is a larger ratio. The number of 

articles written by IT professionals was 24 (or 28%). Only two 

of these publications sought advice from cardiologists on 

matters pertaining to feature extraction [112] and interpreting 

the outcomes produced by their model [74]. As a result, 22 

publications (or 25%) were written by teams who did not have 

any clinical expertise. These groups ran the danger of making 

inaccurate forecasts and, more importantly, of making 

exaggerated claims. Clinicians were not informed of the 

study's categorisation criteria or model findings in one 

instance. Despite creating a predictive model that clinically 

misclassified patients into HF severity groups, the authors still 

claimed that the decision tree ID3 model outperformed all 

other models that had attempted to solve the HF classification 

problem before (Accuracy 0.97). The patient should have been 

assigned to the "critically ill" group instead of the "at risk" 

group due to their age being less than 42 and drastically 

diminished left ventricle ejection fraction (LVEF) being less 

than 40%. A patient was considered "critically ill" if their 

heart rate was 56 beats per minute, which is considered typical 

for those over the age of 60. In order to create a model that 

produces high-quality, clinically-appropriate, and interpretable 

outcomes, our study highlights the significance of data 

analysts working closely with domain specialists [35]. The 

significance of employing clinical knowledge is highlighted 

by Rammal et al. (2018) [32]. They analysed patients' chest x-

rays using MATLAB Haar wavelets and LBP [32]. Patients 

were categorised as either having HF or non-HF based on the 

results of the LBP evaluation. However, a radiologist 

consultant did not properly record these radiographs. In spite 

of this major flaw, the authors said that their Random Forest 

based algorithm could classify patients into HF or non-HF 

groups with an AUC of 0.94; however, this finding is very 

dubious since the authors trained their model using an 

unvalidated set of chest radiographs [32]. 
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6 Discussion 

6.1 Engagement with domain experts 
We observed that it can be easy to overstate the claims in a 

ML study. There was a tendency among the reviewed publi- 

cations to overclaim the usefulness and applicability of the 

developed models to solve clinical problems. Models that 

are both trained and validated using retrospective observa- 

tional cohort studies may be more prone to overfitting data 

and therefore are less able to generalise to the general pop- 

ulation. Randomised clinical trials (RCT) remain the gold 

standard in research leading to introduction of new therapies 

and procedures in the clinical medicine. The best practice 

to test the applicability of the ML model in a clinical set- 

ting would be a RCT to test the ML model vs. standard care 

in relation to a pre-specified endpoint or outcome measure. 

There is a need for a close collaboration between clinicians 

and data scientists to prevent the production and deploy- 

ment of poor models. The authors should interpret the results 

with a clinical team before drawing the conclusion that their 

model outperforms previous models in solving the classifi- 

cation problem. Choi et al. (2017) [39] mentioned in their 

conclusion, that their team “would have benefited from well 

established expert medical knowledge” such as specific fea- 

tures or medical ontologies when developing their predictive 

model for the early detection of HF. This statement left 

us wondering if the engagement with medical experts was 

an afterthought in the data mining projects, for example 

in instances in which the performance of the model does 

not meet the authors’ expectations. In this case, the SVM 

predictive model achieved an AUC score of 0.74. We felt 

that Saqlain et al. (2016) exemplify the pitfalls of the clin- 

ician/data scientist knowledge gap particularly well [112]. 

The authors were exclusively affiliated with an IT depart- 

ment, yet they produced a “treatment plan for HF”. On a 

closer look, this plan did not follow any of the current interna- 

tional guidelines by respected cardiology societies. Despite 

this, the authors claimed the model was both highly accurate 

and highly useful [112]. Engagement with clinical domain 

experts would provide greater assurance that the correct ques- 

tions are asked and ensure that clinically relevant predictive 

models are produced. Moore et al. [96] recognised that under- 

standing the underlying characteristics of real live clinical 

dataset was fundamental to enabling a critical analysis of the 

ML results for the sake of clinical and medical relevance. 

In order to explain what measures clinicians use to eval- 

uate whether ML application fails or not, it is important 

to refer to the human learning process. Clinicians, as well 

as other domain experts learn by experience and reflection 

[113]. In clinical practice, learning by experience is enabled 

by exposure to variety of clinical scenarios over the course 

of specialist training and this is followed by lifelong learn- 

ing as a part of continuous professional development (CPD) 

and continuous medical education (CME). Clinicians con- 

tinue the learning through progressive reading and reflective 

practice [113]. Most importantly, however, doctors use con- 

textualisation to refine and confirm clinical diagnosis based 

on objective tests, prior experience and specialists’ knowl- 

edge of human physiology and pathology. The skill of a quick 

recall of learnt facts and contextualisation allows clinicians 

to critically appraise the results produced by application of 

ML model to clinical datasets. Clinicians also reason using 

first principles (e.g. with understanding of fundamental biol- 

ogy) which is arguably very different to the machine learning 

paradigm. 

When assessing the results of the ML experiment analysing 

a large dataset, clinician’s first concern will be the accuracy 

of the classification or diagnosis and accuracy of suggested 

treatment. In evaluating the contributions and the impact of 

ML in HF management, clinicians would always like to know 

how relevant and applicable ML method is to the outcome of 

the individual patient: can the ML method produce a predic- 

tion of an event (being hospital admission, adverse reaction 

to treatment, worsening of HF symptoms) that can ultimately 

alter this individual patient’s outcomes i.e. improve the qual- 

ity of life, prolong the life expectancy, reduce the risk of major 

event like stroke or myocardial infarct? Hence, clinicians can 

focus on outcomes based assessment which is very important. 

The main benefit that clinicians would expect of having the 

access to accurate and reliable ML models embedded within 

ECR will be enhancement of safe clinical practice in line with 

the latest evidence-based treatments and modern diagnostic 

methods for the benefit of the individual patient. Involving 

a clinician early in the data science pipeline is critical. A 

clinician will typically evaluate an algorithm by benchmark- 

ing the algorithm’s accuracy with the accuracy achieved by 

humans (e.g. consultants). This is an important benchmark 

that is often missed. Whilst an algorithm may show results 

that are statistically significant at the raw data level, if its 

accuracy is significantly inferior to humans’ assessment, then 

its utility maybe called into question and lack ’clinical sig- 

nificance’. Moreover, clinicians will help focus data science 

projects on knowledge and understanding as opposed to mere 

accuracy measures. For example, a clinician can inspect the 

patient cases that were misclassified by the algorithm and 

using expertise to understand why those cases were misclas- 

sified. 

6.2 HF prediction models in international guidelines 
Despite extensive research into ML applications in HF, these 

ML algorithms do not yet feature strongly in international 

guidelines. The European Society of Cardiology (ESC), in its 

85-page document with Clinical Guidelines for the Diagno- 

sis and Treatment of Acute and Chronic Heart Failure (2016), 
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dedicates only a short paragraph to ‘predictive models’. They 

state that precise risk stratification in HF remains challeng- 

ing and the clinical applicability of predictive models is 

limited [114]. Similarly, the National Institute for Clinical 

Excellence (NICE) emphasize the uncertain clinical value 

of predictive models [6]. It should be noted, however, that 

several of non-ML risk models are widely used in cardi- 

ology such as GRACE [115], HEART [116], TIMI [117] 

and euroSCORE [118]. Several of these are focused on HF 

specifically. ESC HF guidelines (2016) highlighted cases in 

cardio-oncology when a risk score for identifying women 

with breast cancer may be useful. Women with breast can- 

cer are at risk of developing HF during chemotherapy with 

trastuzumab and the risk score could prevent catastrophic 

side effects of the cardiotoxic chemotherapy [119]. In 2014 

however, the ESC recommended using an online calculator 

to estimate a patient’s 5-year risk of sudden cardiac death 

(SCD) due to the Hypertrophic Cardiomyopathy (HCM). The 

HCM Risk-SCD calculator is used frequently by cardiolo- 

gists to identify patients, who are at highest risk for sudden 

death secondary to hypertrophic cardiomyopathy, which is 

one of the arrhythmogenic cardiomyopathies. The high score 

from HCM Risk-SCD identifies patients who would benefit 

most from having a prophylactic implantable cardioverter 

defibrillator (ICD) fitted as a primary prevention of SCD. 

O’Mahony, from St. Bartholomew’s Centre for Inherited 

Cardiac Diseases, stressed that the quantification of the indi- 

vidual patient’s risk enhances the shared decision-making 

process between the clinician and a patient [120]. Choosing 

the best treatment option ‘for the patient with the patient’ ful- 

fills the ethos of ‘do no harm’, which is quoted as one of the 

most important rules for practicing clinicians by the GMC 

Good Clinical Practice Guide [121]. 

 

7 Gaps and Research opportunity 

In this review, we identified clear gaps and areas for devel- 

opment in the subject of HF and data analytics. We have 

summarised the gaps in the literature and formulated recom- 

mendations for future work and further research within this 

discipline. 

7.1 Clinical pathways 
 

From a clinical perspective, one of the recurrent issues in 

the HF cohort is a poor uptake of evidence-based therapies. 

Even when effective evidence therapy is available - patients 

are not on optimal targeted therapies and opportunities for 

optimising medications while waiting for clinical reviews are 

missed. We are mindful of variability in access to specialists 

with HF expertise. To date, there has not been much con- 

sideration given to the analysis of clinical processes, clinical 

pathways mining and methods of monitoring patient clin- 

ical condition and medication uptitration. Despite multiple 

studies which consider the prediction of HF readmission to 

hospital, early detection of HF, there still remains an unmet 

need to ensure that patients are seen early by specialist teams 

and start lifesaving and life prolonging treatment as soon as 

possible. 

7.2 Access to modern and divers HF databases 

 
There have been significant improvements over the past 

two decades in HF pharmacotherapy and device therapy 

[3,114,122–125]. It is possible that models developed on 

historical data from 1994, for example, may have little prog- 

nostic value when applied to the patients with HF in 2021. To 

date, the most widely validated mortality prediction model is 

the Seattle Heart Failure Model (SHFM). SHFM is a mortal- 

ity calculator developed on patients’ data recruited to clinical 

trials between 1992 and 1994. SHFM is recommended by 

the International Society for Heart and Lung Transplantation 

Guidelines as a guide score used prior to left ventricle assisted 

device (LVAD) implantation and heart transplantation in a 

severe HF [126]. Simpson and McMurray [127] stated that 

there is a need for new models that have been designed 

using more contemporary cohorts of HF patients. Those 

models should include multiple measurements of biomarkers 

routinely used in clinical practice. This will allow the devel- 

opment of a dynamic predictive model in contrast to a model 

which takes into consideration only the single reading of the 

biomarker [127]. 

Another important aspect is the access to diverse HF 

datasets. In our review, we noted that nearly all studies 

utilised datasets sourced in America, Europe and Asia. There 

were no studies which analysed datasets from the African 

continent. This poses a risk of producing biased algorithms, 

hence we should look for diverse and highly representative 

modern cohorts of patients with HF. 

7.3 Validation of algorithms 
There seem to be frequent issues regarding validation pro- 

cedures of ML models on external patient cohorts. There 

is a need to improve validation procedures. Validation pro- 

cedures were not well described or robust enough to allow 

for a fair model comparison in real-world case studies. We 

noted that more work needs to be done with respect to the 

calibration, external validation, and deployment of predic- 

tive models to ensure that they are suitable for clinical use. 

One of the barriers or prohibiting factors may be the diffi- 

culty in getting access to external, not seen before healthcare 

data. Patient data are governed by data curators and access to 

confidential patient information is decided by regulators and 

ethical panels. Data governance processes are rigorous and 
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lengthy. Validation of the models on real data sets is however 

needed to support the credibility and replicability of the HF 

models. Once those aspects of ML application to healthcare 

data are addressed, there is a chance that wider clinical teams 

will start implementing ML models and warm up to the idea 

of using decision support tools (DSS) in their clinical routine. 

We agree with Kelly et al. (2019) [128] that in order to make 

fair comparisons, algorithms should be subjected to a com- 

parison on the same external test set that is representative of 

the target population, using the same performance metrics. 

The external validation could allow clinicians to determine 

the best algorithm for their patients. 

7.4 ML methods of the future 
 

To be able to address the issue of model transparency and 

external validation, increased effort is required to develop 

accessible ML algorithms. The idea of using in clinical set- 

tings a method based on a “black box” mechanism will be 

quickly rejected by regulators and clinicians, hence there 

should be more focus on developing methods which explain 

and define how the “black box” operates. Another aspect that 

future methods should focus upon is the security and privacy 

protections of accessed data. Methods allowing data analysis 

at the point of data source to ensure that patients confiden- 

tiality is not breached would be an advantage. There is a need 

for new ML methods which allow the automation of patient 

data capture. ML methods that are going to be deployed and 

act as decision support systems should access high quality 

data. Automation of data capture eliminates human error and 

reduces the burden of administrative tasks which place a bur- 

den on the medical workforce. The time spent on data capture 

and ensuring high data quality is the time, that is ultimately 

taken away from the clinician - patient interaction. ML meth- 

ods that will allow clinicians to work smarter will be in high 

demand, especially now, when the clinical workforce can not 

work any harder. 

 

7.5 Collaboration with data curators and clinicians 
Engagement with clinicians is needed at the very early stages 

of data analytics to minimise time spent on investigating 

inappropriate questions (from a clinical point of view) and to 

increase the utility of proposed models in the real world. Col- 

laboration with data curators may lead to the development 

of data repositories that could serve as external validation 

sets for studies performed on different cohort of patients. 

Another benefit of access to population-based registries and 

healthcare data repositories is the opportunity to run registry 

based randomised controlled trials. Registry-based trials are 

inexpensive and less time consuming in comparison to RCT 

with human participants. Uncomplicated procedures around 

safe access to high quality data repositories will promote 

data driven research and prompt identification of previously 

undetected clinical problems. 

 

7.6 Transparency and reporting of trials with use of 
ML 

 
With an increasing number of clinical trials with ML and 

AI tools there is understandably an urgent need for transpar- 

ent reporting of these trials. ML algorithms and validation 

methodologies should be carefully designed and reported 

to avoid research waste. CONSORT-AI and SPIRIT-AI 

Extension groups will address the issue of transparent and 

systematic reporting of trials with ML and AI [129]. In July 

2019, there were 368 clinical trials in the field of AI or ML 

registered on ClinicalTrials.gov [129]. To date, the majority 

of trials were retrospective or observational, with a hand- 

ful of prospective trials using AI or ML in an intervention 

arm [130]. We noted that the reporting of the studies varied 

between papers. Unfortunately, because authors of reviewed 

papers did not use a standard set of data and there was 

no unified definition for used variables, it was not possi- 

ble to create a universal feature dictionary to perform further 

data synthesis or comprehensive meta-analysis. This high- 

lights the importance of the use of recognised dictionaries 

for data collection akin to the standard sets developed by 

the International Consortium for Health Outcomes Measure- 

ment [131]. Health Data Research UK (HDRUK) published 

the 20 critical questions on transparency, replicability, ethics, 

and effectiveness (TREE) on best practice guidance on ML 

and AI research for patient benefit [132]. TREE provides a 

framework for researchers to inform the design, conduct, and 

reporting; for clinicians and policy makers, it helps to criti- 

cally appraise where the new findings may be delivered for 

the benefit of the patient [132]. 

 

7.7 High time for RCTs 
The most important gap that has not been addressed as yet 

is the lack of evidence that ML driven methodologies could 

be used in parallel with everyday standard clinical practice. 

Decision support tools based on predictive models, could 

save time and money spent in healthcare. We need robust 

evidence that ML methods can handle complexities of clini- 

cal reasoning before they can be safely deployed to clinical 

practice. Developers of predictive models should now move 

from the development stage to the deployment stage. As in 

a case of patient-specific predictions about HF readmission, 

they have not been widely used because of low evidence and 

uncertainty about the efficacy and accuracy of using mea- 

sures of risk to guide clinical decisions. 

Only after proving safety and positive impact on patients’ 

outcomes could ML and AI tools be deployed to real clinical 

environments. The UK Medicines and Healthcare products 
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Regulatory Agency (MHRA) considers AI to be a medical 

device [133]. MHRA developed a work program to ensure 

that AI used for screening, diagnosis, treatment, and man- 

agement of chronic conditions is treated as a medical device 

and is appropriately evidenced. Main areas of concern are 

issues of human interpretability (mentioned earlier “black 

box” effect and lack of transparency of AI) and adaptivity 

(retraining of AI models in real time). Given that AI and 

ML are considered a medical device, they should be tested 

under the same rigorous conditions as all implantable and 

non-implantable medical devices during prospective RCTs. 

Carefully designed RCTs with ML support decision tools 

and predictive models in an intervention arm vs standard 

of practice would allow objective and robust test of their 

effectiveness and impact on clinical practice and patients’ 

outcomes. The next step should be careful planning of RCTs 

where ML guided practice could be compared to standard 

of care with clearly defined outcome measures like safety, 

improvement of diagnostic process in terms of time from 

presentation to diagnosis, accuracy of classification to treat- 

ment groups, improvement in time where target medication 

doses are achieved. 

8 Conclusions 

In conclusions, the choice of a 6-year window for the liter- 

ature review could be considered a drawback to this study, 

however it should be noted that we had the intention to review 

ML models which were applied to contemporary cohorts 

of patients, who were treated with modern evidence based 

HF pharmacotherapy and whose clinical course was closely 

monitored by biomarker assays such as proBNP and Tro- 

ponin [127]. Even though the review focused on studies from 

the last 6 years, it was observed that many research groups 

still used rather outdated open source cardiac dataset from 

UCI which was donated by Dr David W. Aha in January 1988. 

This database contains data from exercise stress test (EST) 

which has been phased out in 2016 as a first line diagnostic 

test for patients presenting with the new onset chest pain from 

the UK Clinical Guidelines number 95 published by National 

Institute for Clinical Excellence (NICE) [134]. Our review is 

limited by our literature search, where we explicitly required 

the search terms “heart failure”, “machine learning” or “data 

mining” or “data analytics” or “data science” mentioned in 

the title or the abstract. 

We have excluded studies using datasets from clinical 

trials. Data from clinical trials represent a highly selective 

cohort of the HF population. The trial data do not repre- 

sent real-world healthcare data issues with missing values or 

an uneven distribution of features. Due to the differences 

in type of data presented in mobile health and telehealth 

datasets, we decided to exclude studies focusing on appli- 

cation of ML on these datasets. We recognise however the 

growing application of wearable technology in collecting 

data from ambulatory patients with HF [135]. Whilst we 

excluded papers that involve natural language processing 

(NLP) techniques as the means of interrogating HF datasets, 

we recognise that NLP techniques can be used to analyse 

clinicians’ free text notes [136,137]. 

One of the more significant findings to emerge from this 

review is the fact that modern ML models have the potential 

to capture the complex interplay between clinical variables 

more effectively when compared to traditional statistical 

methods. This increases as the sophistication of the models 

increases. For example, in the extremely challenging field 

of natural language processing, the GPT-3 neural network 

has succeeded in learning latent space representations that 

allow it to communicate with unnerving ‘human-ness’. How- 

ever, the predictive power of ML models tends to correlate 

inversely with how explainable they are. To conclude, this 

presents a substantial barrier to clinical adoption and more 

research is needed to address the transparency and explain- 

ability of ML models. Based on our systematic literature 

review, we share the conclusions drawn by Di Tanna et al. 

(2020) [138] who concluded that despite 40 new publications on 

predicting risk in HF being published between 2013 and 2018, 

there was little evidence to show that any of 58 models described in 

those studies have been adopted by healthcare institutions [138]. 

We support their observation that there is no international or local 

guidance recommending one risk prediction model over another. 

Even when American College of Cardiology, European Society of 

Cardiology, or NICE guidelines mention the use of predictive 

models, they still claim that more research needs to be done into 

the clinical use of predictive models [3,6,126,139]. 

The authors of this review paper include clinicians with 

significant expertise in HF. Clinical expertise and domain 

knowledge facilitated the identification of inaccuracies and 

incorrect classifications in context of some studies presented 

in this paper. In addition, the findings of this review suggest 

that based on the ratio of clinicians to data researchers in 

the make-up of authors, good proportion of reviewed studies 

were driven by data analysts. It is important to stress that 

studies developing predictive models that are to be used in 

clinical settings should be co-driven by domain experts via 

a very close collaboration with data analysts. This approach 

will guarantee that the right research questions are asked at 

the right time and promote uptake. 

Otherwise there is a risk of producing ML and AI algo- 

rithms which will never see the artificial light of a clinical 

room. In summary, we see growing potential for ML appli- 

cation in routine clinical practice, this however requires a 

shift from development stage to the deployment stage of ML 

models after validation in RCTs, research into clinical path- 

ways, access to modern HF datasets and concerted effort to 
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improve transparency and reporting of trials with the use of 

ML. 
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