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ABSTRACT 

Stress is a natural human reaction to demands or pressure, usually when perceived as harmful or/and toxic. When 

stress becomes constantly overwhelmed and prolonged, it increases the risk of mental health and physiological 

uneasiness. Furthermore, chronic stress raises the likelihood of mental health plagues such as anxiety, depression, and 

sleep disorder. Although measuring stress using physiological parameters such as heart rate variability (HRV) is a 

common approach, how to achieve ultra-high accuracy based on HRV measurements remains as a challenging task. 

HRV is not equivalent to heart rate. While heart rate is the average value of heart beats per minute, HRV represents 

the variation of the time interval between successive heartbeats. The HRV measurements are related to the variance 

of RR intervals which stand for the time between successive R peaks. In this study, we investigate the role of HRV 

features as stress detection bio-markers and develop a machine learning-based model for multi-class stress detection. 

More specifically, a convolution neural network (CNN) based model is developed to detect multi-class stress, namely, 

no stress, interruption stress, and time pressure stress, based on both time- and frequency-domain features of HRV. 

Validated through a publicly available dataset, SWELL−KW, the achieved accuracy score of our model has reached 

99.9% (Precision=1, Recall=1, F1−score=1, and MCC=0.99), thus outperforming the existing methods in the 

literature. In addition, this study demonstrates the effectiveness of essential HRV features for stress detection using a 

feature extraction technique, i.e., analysis of variance. 

Keywords: multi-class stress detection, heart rate variability, deep neural network, convolutional neural network, 

time-domain features, frequency-domain features, HRV biomarkers. 

INTRODUCTION 

Stress is an inherent human response to perceived threats, pressures, or demands, often resulting in physiological and 

psychological changes. This response, while natural and sometimes beneficial in short-term scenarios, can become 

detrimental when prolonged or overwhelming. Chronic stress has been linked to a multitude of adverse health 

outcomes, including heightened risks of mental health disorders such as anxiety, depression, and sleep disorders. The 

detrimental impact of chronic stress on overall health underscores the importance of effective stress detection and 

management strategies. Heart rate variability (HRV) has emerged as a valuable physiological parameter for assessing 

stress levels. HRV refers to the variation in time intervals between successive heartbeats, known as RR intervals. 

Unlike heart rate, which measures the average number of heartbeats per minute, HRV provides insights into the 

autonomic nervous system's regulation of the heart. Higher HRV generally indicates greater autonomic flexibility and 

resilience, whereas lower HRV is often associated with stress and poor health outcomes. Therefore, HRV is considered 

a significant biomarker for detecting stress and monitoring autonomic nervous system function. 

Despite its potential, achieving high accuracy in stress detection using HRV remains a challenging task. Traditional 

methods of analyzing HRV often rely on time-domain and frequency-domain features. Time-domain features include 

statistical measures such as the standard deviation of RR intervals (SDNN) and the root mean square of successive 
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differences (RMSSD). Frequency-domain analysis involves decomposing the HRV signal into different frequency 

bands, such as low-frequency (LF) and high-frequency (HF) components, which are associated with sympathetic and 

parasympathetic activity, respectively. While these methods provide valuable information, they may not capture the 

complex patterns associated with different stress levels, leading to suboptimal accuracy. To address these limitations, 

recent advancements in machine learning and deep learning offer promising approaches for enhancing stress detection 

accuracy. Convolutional neural networks (CNNs), a type of deep learning model, have shown exceptional 

performance in various domains, including image and signal processing. CNNs are capable of automatically learning 

and extracting relevant features from raw data, making them suitable for complex tasks such as multi-class stress 

detection based on HRV signals. By leveraging CNNs, it is possible to develop models that can accurately classify 

different stress levels, including no stress, interruption stress, and time pressure stress. 

In our study, we propose a CNN-based model for multi-class stress detection using HRV features. The model is 

designed to utilize both time-domain and frequency-domain features of HRV to enhance its accuracy and robustness. 

The time-domain features provide statistical measures of HRV, while the frequency-domain features offer insights 

into the autonomic balance. By combining these features, the CNN model can effectively capture the intricate patterns 

associated with different stress levels. The proposed model is validated using the publicly available SWELL-KW 

dataset, which contains HRV measurements collected from participants under various stress conditions. The dataset 

includes labeled instances of no stress, interruption stress, and time pressure stress, providing a comprehensive testbed 

for evaluating the model's performance. The CNN model is trained on a subset of the dataset and tested on the 

remaining data to assess its accuracy, precision, recall, F1-score, and Matthews correlation coefficient (MCC). 

 

 

Fig 1. System Architecture 

Our results demonstrate that the CNN-based model achieves an impressive accuracy score of 99.9%, with precision, 

recall, and F1-score all reaching 1. These metrics indicate that the model performs exceptionally well in distinguishing 

between different stress levels, significantly outperforming existing methods in the literature. The high accuracy and 
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reliability of the model highlight the potential of deep learning approaches for improving stress detection based on 

HRV. Furthermore, our study investigates the effectiveness of essential HRV features for stress detection. By 

employing a feature extraction technique such as analysis of variance (ANOVA), we identify the most relevant 

features that contribute to the model's performance. This analysis provides valuable insights into the physiological 

underpinnings of stress and helps refine the feature set used for training the model. The identification of key HRV 

features not only enhances the model's accuracy but also contributes to a better understanding of the relationship 

between HRV and stress. 

In summary, our study presents a novel approach for multi-class stress detection using HRV and deep learning. The 

integration of CNNs with time-domain and frequency-domain features of HRV offers a powerful tool for accurately 

detecting different stress levels. The validation results demonstrate the model's superior performance, highlighting its 

potential for practical applications in stress monitoring and management. By advancing the accuracy and reliability of 

stress detection, our approach contributes to the development of effective strategies for mitigating the adverse effects 

of chronic stress on mental and physical health.  

LITERATURE SURVEY 

The literature on stress detection using physiological parameters such as heart rate variability (HRV) is extensive and 

multifaceted, reflecting the complexity of both the physiological responses to stress and the methodologies used to 

analyze these responses. HRV, which measures the variation in time intervals between successive heartbeats, is 

recognized as a significant biomarker for stress detection due to its association with autonomic nervous system 

regulation. Unlike heart rate, which is a straightforward measure of beats per minute, HRV provides a more nuanced 

view of the balance between sympathetic and parasympathetic nervous system activity. This balance is crucial for 

understanding stress responses, as it reflects the body's ability to adapt to varying levels of stress. Historically, the 

primary methods for analyzing HRV have involved time-domain and frequency-domain analyses. Time-domain 

methods include measures such as the standard deviation of NN intervals (SDNN) and the root mean square of 

successive differences (RMSSD), which provide insights into the overall variability of heartbeats. Frequency-domain 

methods, on the other hand, decompose the HRV signal into its constituent frequencies, typically categorized into 

low-frequency (LF) and high-frequency (HF) bands. These bands correspond to different aspects of autonomic 

regulation, with LF associated with both sympathetic and parasympathetic activity, and HF predominantly reflecting 

parasympathetic activity. 

While these traditional methods have proven useful, they often fall short in achieving the ultra-high accuracy required 

for reliable stress detection in varied and complex real-world scenarios. This limitation has driven researchers to 

explore more advanced techniques, particularly those involving machine learning and deep learning. Machine learning 

models, such as support vector machines (SVMs) and random forests, have been applied to HRV data to improve 

stress detection accuracy. These models can handle non-linear relationships and interactions between multiple 

features, which are often present in physiological data. However, the performance of these models is heavily dependent 

on the quality and relevance of the extracted features, highlighting the importance of effective feature selection and 

extraction processes. Deep learning, particularly convolutional neural networks (CNNs), offers a promising alternative 

to traditional machine learning methods. CNNs are designed to automatically learn hierarchical feature representations 

from raw data, reducing the need for manual feature extraction and selection. This capability is particularly 

advantageous for analyzing complex physiological signals such as HRV, where subtle patterns may be indicative of 

different stress levels. CNNs have been successfully applied in various domains, including image and speech 

recognition, demonstrating their potential for high accuracy and robustness. 

In the context of stress detection, CNNs can be trained to classify different stress levels based on HRV signals. By 

leveraging both time-domain and frequency-domain features, CNNs can capture a comprehensive view of the HRV 
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data, enhancing their ability to distinguish between different types of stress. Time-domain features provide information 

about the overall variability and patterns in the heart rate signal, while frequency-domain features offer insights into 

the autonomic regulation mechanisms underlying these patterns. Combining these features allows the CNN to learn 

complex relationships and interactions that may be indicative of specific stress levels. The validation of deep learning 

models for stress detection typically involves the use of publicly available datasets, such as the SWELL-KW dataset. 

This dataset contains HRV measurements collected from participants under various stress conditions, providing a 

valuable resource for training and testing stress detection models. The SWELL-KW dataset includes labeled instances 

of no stress, interruption stress, and time pressure stress, allowing researchers to evaluate the performance of their 

models across multiple stress categories. Achieving high accuracy in such multi-class classification tasks is a 

significant challenge, requiring models to effectively differentiate between nuanced variations in HRV signals. 

Recent studies have reported promising results using CNN-based models for stress detection. These models have 

achieved high accuracy, precision, recall, and F1-scores, indicating their effectiveness in accurately classifying 

different stress levels. For example, a CNN model validated on the SWELL-KW dataset achieved an accuracy of 

99.9%, with precision, recall, and F1-score all reaching 1, and a Matthews correlation coefficient (MCC) of 0.99. 

These results demonstrate the potential of deep learning approaches to outperform traditional methods and set new 

benchmarks for stress detection accuracy. In addition to improving classification accuracy, CNN-based models also 

facilitate the identification of essential HRV features for stress detection. Techniques such as analysis of variance 

(ANOVA) can be used to determine the most relevant features that contribute to the model's performance. This process 

not only enhances the model's accuracy but also provides valuable insights into the physiological mechanisms 

underlying stress responses. Understanding which HRV features are most indicative of stress can inform the 

development of more targeted and effective stress management interventions. 

Overall, the literature highlights the evolving landscape of stress detection research, with a clear trend towards the 

adoption of advanced machine learning and deep learning techniques. The use of HRV as a biomarker for stress 

detection is well-established, and recent advancements in deep learning offer new opportunities to achieve ultra-high 

accuracy in detecting different stress levels. As research continues to explore and refine these approaches, the potential 

for developing reliable and practical stress detection systems becomes increasingly attainable. These systems can play 

a crucial role in mitigating the adverse effects of chronic stress on mental and physical health, ultimately contributing 

to improved well-being and quality of life. 

PROPOSED SYSTEM 

The proposed system for multi-class stress detection through heart rate variability (HRV) leverages the power of deep 

learning, specifically convolutional neural networks (CNNs), to achieve high accuracy in classifying different levels 

of stress. Stress detection is critical due to its impact on mental and physical health, with chronic stress leading to 

conditions like anxiety, depression, and sleep disorders. Traditional methods of stress detection using HRV often fall 

short of the desired accuracy, prompting the need for more sophisticated approaches. This system integrates both time-

domain and frequency-domain features of HRV to capture comprehensive data characteristics and improve stress 

detection. The system begins with the collection of HRV data. HRV measures the variation in time intervals between 

successive heartbeats, specifically the RR intervals, which are the time intervals between the R-peaks of successive 

heartbeats. Unlike heart rate, which is a simple measure of beats per minute, HRV provides detailed information about 

autonomic nervous system activity, reflecting the body's response to stress. The data collection process involves using 

wearable devices or sensors that can accurately capture these intervals over a period, providing a continuous stream 

of data for analysis. 

Once the HRV data is collected, the next step is preprocessing, which includes filtering noise and artifacts to ensure 

the accuracy of the RR interval data. This is crucial as the presence of noise can significantly affect the quality of the 

extracted features and the overall performance of the model. Techniques such as moving average filters or more 
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advanced signal processing methods are employed to clean the data, retaining only the true physiological signals. 

Following preprocessing, feature extraction is performed. The system extracts both time-domain and frequency-

domain features from the HRV data. Time-domain features include statistical measures such as the mean RR interval, 

standard deviation of NN intervals (SDNN), and the root mean square of successive differences (RMSSD). These 

features provide insights into the overall variability and short-term fluctuations in heart rate. Frequency-domain 

features are obtained using methods like Fast Fourier Transform (FFT) to decompose the HRV signal into its 

constituent frequencies. Key frequency-domain features include the power in the low-frequency (LF) and high-

frequency (HF) bands, which correspond to different aspects of autonomic regulation. 

The extracted features are then used to train the convolutional neural network (CNN). CNNs are particularly well-

suited for this task due to their ability to automatically learn hierarchical feature representations from raw data. The 

architecture of the CNN includes multiple layers: convolutional layers for feature extraction, pooling layers for 

dimensionality reduction, and fully connected layers for classification. The convolutional layers apply filters to the 

input data to detect various patterns and features, while the pooling layers reduce the spatial dimensions, making the 

model more computationally efficient. The fully connected layers integrate the extracted features to perform the final 

classification. The CNN model is trained using the labeled HRV data from the SWELL-KW dataset, which contains 

instances of no stress, interruption stress, and time pressure stress. The training process involves optimizing the 

model's parameters to minimize the classification error. This is achieved through backpropagation and gradient 

descent algorithms, which adjust the weights of the neural network based on the error gradient. The model's 

performance is validated using a separate test set from the same dataset to ensure that it generalizes well to new, 

unseen data. 

During the validation phase, the model's accuracy, precision, recall, F1-score, and Matthews correlation coefficient 

(MCC) are evaluated. The achieved results indicate an accuracy score of 99.9%, with precision, recall, and F1-score 

all reaching 1, and an MCC of 0.99. These metrics demonstrate the model's exceptional performance in accurately 

classifying different stress levels, significantly outperforming existing methods in the literature. The high precision 

and recall indicate that the model is both highly accurate and reliable, with minimal false positives and false negatives. 

To further enhance the model's performance and interpretability, the study employs analysis of variance (ANOVA) to 

identify the most essential HRV features for stress detection. This feature extraction technique helps in understanding 

which aspects of the HRV signal contribute most significantly to the classification task. By focusing on the most 

relevant features, the model can be made more efficient and potentially more accurate, as irrelevant or redundant 

features are eliminated. 

The proposed system's success underscores the potential of deep learning approaches in the field of physiological 

signal analysis. The integration of CNNs with comprehensive HRV features allows for the development of highly 

accurate stress detection systems. Such systems can be instrumental in real-time stress monitoring and management, 

providing timely interventions to mitigate the adverse effects of chronic stress on mental and physical health. In 

practical applications, this system can be integrated into wearable health monitoring devices, enabling continuous and 

non-invasive stress assessment. By providing real-time feedback, users can be alerted to high stress levels and take 

appropriate measures to manage their stress. This can have significant implications for improving overall well-being 

and preventing stress-related health issues. In summary, the proposed system for multi-class stress detection through 

HRV using a CNN-based approach represents a significant advancement in the field of stress monitoring. By 

leveraging the strengths of deep learning and the detailed insights provided by HRV analysis, the system achieves 

ultra-high accuracy in classifying different stress levels. This approach not only enhances our understanding of the 

physiological markers of stress but also provides a practical solution for real-time stress management, with the 

potential to significantly impact public health and well-being. 
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METHODOLOGY 

The methodology for detecting multi-class stress through heart rate variability (HRV) using a deep neural network-

based approach involves several carefully designed steps. These steps ensure that the system can accurately classify 

different stress levels by leveraging both time-domain and frequency-domain features of HRV. The process begins 

with data collection and preprocessing, followed by feature extraction, model development, training, validation, and 

evaluation. Each step is crucial for achieving high accuracy in stress detection. The first step involves collecting HRV 

data. HRV is derived from the time intervals between successive heartbeats, known as RR intervals. This data is 

typically collected using wearable sensors or devices capable of continuously monitoring heart activity. The collected 

data includes detailed information on the timing of each heartbeat, which is essential for calculating HRV. The 

SWELL-KW dataset, a publicly available dataset, is used in this study. This dataset contains HRV measurements 

under different stress conditions, providing a valuable resource for developing and testing the model. 

Once the HRV data is collected, it undergoes preprocessing to remove noise and artifacts that could affect the analysis. 

This step involves filtering the raw data to eliminate any extraneous signals that do not originate from heartbeats, such 

as those caused by movement or electrical interference. Techniques such as moving average filters or more advanced 

signal processing methods are employed to clean the data, ensuring that only true physiological signals are retained. 

Preprocessing is crucial because high-quality data is essential for accurate feature extraction and model performance. 

After preprocessing, the next step is feature extraction. This involves calculating various time-domain and frequency-

domain features from the HRV data. Time-domain features include statistical measures such as the mean RR interval, 

the standard deviation of NN intervals (SDNN), and the root mean square of successive differences (RMSSD). These 

features provide insights into the overall variability and patterns in heart rate. Frequency-domain features are obtained 

using methods like Fast Fourier Transform (FFT), which decompose the HRV signal into different frequency bands. 

Key frequency-domain features include the power in the low-frequency (LF) and high-frequency (HF) bands, which 

reflect different aspects of autonomic nervous system activity. By extracting these features, the system captures a 

comprehensive set of indicators that reflect the body's physiological response to stress. 

With the features extracted, the next step is developing the convolutional neural network (CNN) model. CNNs are 

particularly suitable for this task due to their ability to automatically learn hierarchical feature representations from 

raw data. The CNN architecture includes multiple layers: convolutional layers for feature extraction, pooling layers 

for dimensionality reduction, and fully connected layers for classification. The convolutional layers apply filters to 

the input data to detect various patterns and features, while the pooling layers reduce the spatial dimensions, making 

the model more computationally efficient. The fully connected layers integrate the extracted features to perform the 

final classification. The CNN model is then trained using the labeled HRV data from the SWELL-KW dataset. The 

dataset contains instances of no stress, interruption stress, and time pressure stress, which are used as the target classes 

for the model. The training process involves optimizing the model's parameters to minimize the classification error. 

This is achieved through backpropagation and gradient descent algorithms, which adjust the weights of the neural 

network based on the error gradient. The model learns to distinguish between different stress levels by identifying 

patterns in the HRV features associated with each class. 

To validate the model's performance, it is tested on a separate subset of the SWELL-KW dataset that was not used 

during training. This step ensures that the model can generalize to new, unseen data. The validation process involves 

calculating various performance metrics, including accuracy, precision, recall, F1-score, and Matthews correlation 

coefficient (MCC). These metrics provide a comprehensive assessment of the model's ability to correctly classify 

different stress levels. The results demonstrate that the CNN model achieves an impressive accuracy score of 99.9%, 

with precision, recall, and F1-score all reaching 1, and an MCC of 0.99. These metrics indicate that the model performs 

exceptionally well, significantly outperforming existing methods in the literature. In addition to evaluating the overall 

performance of the model, the study also investigates the effectiveness of essential HRV features for stress detection. 
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This is achieved using a feature extraction technique called analysis of variance (ANOVA). ANOVA helps identify 

the most relevant features that contribute to the model's performance by measuring the statistical significance of each 

feature in distinguishing between different stress levels. By focusing on the most important features, the model can be 

made more efficient and potentially more accurate, as irrelevant or redundant features are eliminated. This analysis 

provides valuable insights into the physiological mechanisms underlying stress responses and helps refine the feature 

set used for training the model. 

The proposed methodology demonstrates the potential of deep learning approaches for improving stress detection 

based on HRV. By integrating CNNs with comprehensive HRV features, the system achieves ultra-high accuracy in 

classifying different stress levels. This approach not only enhances our understanding of the physiological markers of 

stress but also provides a practical solution for real-time stress monitoring and management. The high accuracy and 

reliability of the model make it suitable for applications in various settings, such as healthcare, workplace stress 

management, and personal health monitoring. In summary, the methodology for multi-class stress detection through 

HRV using a CNN-based approach involves a series of carefully designed steps, from data collection and 

preprocessing to feature extraction, model development, training, validation, and evaluation. Each step is critical for 

achieving the high accuracy required for reliable stress detection. The integration of time-domain and frequency-

domain features with deep learning techniques provides a powerful tool for identifying different stress levels, offering 

significant improvements over traditional methods. The success of this approach underscores the potential for 

advanced machine learning models to transform the field of physiological signal analysis and stress detection. 

RESULTS AND DISCUSSION 

The results of our study on multi-class stress detection through heart rate variability (HRV) using a deep neural 

network-based approach demonstrate significant advancements in accurately classifying different stress levels. The 

convolutional neural network (CNN) model developed in this study was validated using the SWELL-KW dataset, 

which includes HRV measurements under various stress conditions such as no stress, interruption stress, and time 

pressure stress. Our model achieved an impressive accuracy score of 99.9%, with precision, recall, and F1-score all 

reaching 1, and a Matthews correlation coefficient (MCC) of 0.99. These metrics indicate that the CNN model 

performs exceptionally well in distinguishing between different stress levels, significantly outperforming existing 

methods in the literature. The high precision and recall scores suggest that the model has a low rate of false positives 

and false negatives, making it highly reliable for practical applications. 

The success of the CNN model can be attributed to its ability to leverage both time-domain and frequency-domain 

features of HRV. Time-domain features, such as the mean RR interval, SDNN, and RMSSD, provide valuable insights 

into the overall variability and short-term fluctuations in heart rate. Frequency-domain features, obtained through Fast 

Fourier Transform (FFT), offer insights into the autonomic regulation mechanisms by decomposing the HRV signal 

into low-frequency and high-frequency components. By combining these features, the CNN model captures a 

comprehensive set of indicators that reflect the body's physiological response to stress. The model's architecture, which 

includes multiple convolutional layers for feature extraction and pooling layers for dimensionality reduction, allows 

it to learn complex patterns and interactions within the data, contributing to its high accuracy. 
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Fig 2. Results screenshot 1 

 

Fig 3. Results screenshot 2 
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Fig 4. Results screenshot 3 

 

Fig 5: Results screenshot 4 
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Fig 6: Results screenshot 5 

 

Fig 7: Results screenshot 6 
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Fig 8: Results screenshot 7 

 

Fig 9: Results screenshot 8 
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Fig 10: Results screenshot 9 

Our study also highlights the effectiveness of using analysis of variance (ANOVA) to identify essential HRV features 

for stress detection. ANOVA helps determine the most relevant features by measuring the statistical significance of 

each feature in distinguishing between different stress levels. This feature extraction technique not only enhances the 

model's performance but also provides valuable insights into the physiological markers of stress. By focusing on the 

most significant features, the model becomes more efficient and accurate, as irrelevant or redundant features are 

eliminated. The identification of key HRV features contributes to a better understanding of the relationship between 

HRV and stress, which can inform the development of more targeted and effective stress management interventions. 

Overall, the integration of CNNs with comprehensive HRV features and advanced feature extraction techniques 

presents a powerful approach for multi-class stress detection, with significant implications for improving mental health 

and well-being. 

CONCLUSION 

In this study, we have developed novel a 1D CNN model for stress level classification using HRV signals and validated 

the proposed model based on a publicly available dataset, SWELL−KW. In our model, we also applied an ANOVA 

feature selection technique for dimension reduction. Through extensive training and validation, we demonstrate that 

our model outperforms the state-of-the-art models in terms of major performance metrics, i.e., Accuracy, Precision, 

Recall, F1-score, and MCC when all features are employed. Furthermore, our approach with ANOVA feature 

reduction also achieves excellent performance. For future work, we plan to further investigate the feasibility of 

optimizing the model to fit it into edge devices so that real-time stress detection can become a reality. 
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