

 ISSN 2347–3657

 Volume 12 , Issue 2, April 2024

145

DATA CONSISTENCY IN MULTI CLOUD STORAGE SYSTEM WITH

PASSIVE SERVERS AND NON COMMUNICATING CLOUDS

1G.MAHAMMADH IDRUSH , 2P.SRIVANI, 3P.NAVEEN,4 P.INDRAKARAN

1Assistant Professor in Department of CSE Teegala Krishna Reddy Engineering College

2,3,4, UG Scholars in Department of CSE Teegala Krishna Reddy Engineering College

Abstract

Multi-cloud storage systems are becoming more popular due to the ever-expanding amount of consumer data.

This growth is accompanied by increasing concerns regarding security, privacy, and reliability of cloud storage

solutions. Ensuring data consistency in such systems is especially challenging due to their architecture and

characteristics. Furthermore, the atomicity of operations is not always guaranteed by the clouds’ public APIs. In

this project, we formally define data consistency in multi-cloud storage systems, identify how they can be

violated, and introduce a new method that provably maintains the data consistency in these systems. The

implementation and experiments show that the proposed method can maintain data consistency with a certain

delay in data uploading and that it is scalable with respect to the number of used clouds as well as the number of

users. Integrating this method into multi-cloud storage systems will enhance their usability and reliability

 I INTRODUCTION

With the ever-growing amounts of data, users

are shifting towards cloud storage services.

These services provide convenience as they omit

the need for maintaining local storage means and

provide accessibility from anywhere and across

different devices. However, outsourcing data to

the cloud comes with data confidentiality and

integrity critical requirements. Relying on a

single cloud storage provider fails to meet these

requirements due to the inevitable risks of

privacy breaches, data leaks, and service

outages. To tackle this issue, various multi-cloud

storage systems (also known as a cloud of

clouds) have been proposed in the literature.

Most of these systems partition the data into

multiple parts,

encode these parts using erasure codes, encrypt

them, and finally, save each part on a different

cloud provider. When such systems are server-

less (i.e., partitioning, encoding, and encryption

operations occur on clients’ machines rather

than on a centralized server), they can offer

privacy, security, and protection from data loss.

Privacy is guaranteed since individual cloud

providers will have no knowledge about the

content of the data as they store only an

 ISSN 2347–3657

 Volume 12 , Issue 2, April 2024

146

encrypted part. The data is also secured since its

integrity is preserved (since modifications will

lead to detectable data corruption). Finally,

reliability is provided through erasure codes

since even if part of the data is unavailable (e.g.,

due to an inaccessible cloud), the original data

can still be reconstructed/decoded from other

available parts. In general, server-less multi-

cloud storage systems can provide trust in the

cloud. There are several important use-cases of

multi-cloud storage systems for both end-users

as well as businesses. End users can store

personal files that are hidden from the cloud and

not subject to potential denial of access. This is

becoming more important due to multiple

recently reported privacy-leak incidents, which

caused many cloud-end users to opt-out of using

cloud services. Similarly, multiple businesses

would also like to have guaranteed privacy and

availability of their sensitive data. This is

especially important for businesses since they

are subject to different jurisdictions and

potential subpoena-forced data acquisition or

service denial, depending on the cloud data

center location. Multi-cloud storage systems,

similar to cloud storage services, should allow

users to access and modify their files from

anywhere. Furthermore, users can access their

data from multiple independent client devices.

Therefore, data should always be synchronized

and consistent across all users’ devices. One of

the fundamental synchronization features is the

ability to detect data conflicts and maintain data

consistency. In general, data conflicts occur

when multiple clients attempt to modify the

same file at the same time. Data consistency

assures that no information is lost in such a case

Multi-cloud storage systems can detect conflicts

and preserve consistency through utilizing

a centralized coordination point (e.g., server)

that receives and logs the modification requests

from the different clients (append-log).

Specialized software can parse the logs and

determines the existence of a conflict. However,

secure multi-cloud storage systems are server-

less. Hence, there is no central controller to

coordinate between clients and detect data

conflicts. This is of utmost importance since

users should not need to trust any third party to

handle their raw data.

II LITERATURE SURVEY

Various multi-cloud systems have been

proposed in the literature. Cloud-

RAID,NCCloud, RAIN, RAIC, Hyprid CoC,

and Uni4Cloud systems leverage multiple clouds

to address the aforementioned cloud trust issue.

These systems do not support multiple clients

and end-devices and are not prone to concurrent

access issues. Thus, the data consistency issue is

not considered. Other works like Spy storage

and Trusty drive support multiclient access.

However, the data consistency issue is either

 ISSN 2347–3657

 Volume 12 , Issue 2, April 2024

147

relayed to separate centralized service or is not

addressed.Hybris is a multi-cloud storage

protocol. It supports multiple writers

consistency. However, inter-client and cloud

communication is necessary. This required an

extra layer to perform such communication,

which is Apache Zoo Keeper (ZK). Depending

on the configuration, ZK might form a single

point of failure since all clients rely on this

server to

communicate and coordinate updates among

each other. Besides, such architecture still

requires clients to trust a third party (Apache

ZK) while using a multi-cloud storage system.

SLA provides two tree and token-based

distributed mutual exclusion algorithms that can

be used for multi-cloud storage, but it also

requires inter-client communication. Meta Sync

provides a file synchronization service on top of

cloud storage providers. It employs a modified

version of the Paxos consensus algorithm called

passive Paxos (pPaxos). This modified version

allows clients to communicate passively

(through files) over the clouds in order to reach

consensus. This modification requires an

append-only atomic list to keep track of protocol

messages and eventually reach a consensus.

Cloud-types proposed specialized data types that

guarantee eventual consistency to all clients. A

program that utilizes these data types is

abstracted from synchronization complexities

and can automatically synchronize data through

fork-join techniques. The implementation

requires communication between servers. Thus,

such implementation is not suitable for a multi-

cloud storage system where servers are

completely passive.

Saveme is a multi-cloud storage system that

proposed a mutual exclusion method for

concurrent data access without the need for a

central server or any communication between

clouds or between clients. This method requires

atomic operations that cannot be interrupted.

The authors surveyed different APIs from

several cloud providers to identify some atomic

operations and mapped the unlock/lock

operations to other atomic operations offered by

the cloud providers. While the proposed system

successfully addresses the concurrent access

issue, it might be unreliable since these

operations are not guaranteed to stay atomic by

the cloud providers. Also, the implementation is

more complicated since each provider offers

different atomic operations. For example,

placing a lock might be mapped to moving a file

in cloud, whereas in cloud B, it might be

mapped to adding a comment to a file. The

deadlock recovery method is based on a fixed

amount of time that is experimentally

determined (deadline),which is not suitable for

all network connections and speeds. Lastly, the

method selects a cloud out of

the used ones to be used for locking/unlocking

operations. However, the selected cloud might

 ISSN 2347–3657

 Volume 12 , Issue 2, April 2024

148

not be available to all users at the same time. In

such cases, the mutual exclusion will not be

sufficient. Summarizes the main approaches to

achieve the data consistency feature in multi-

cloud storage systems that provide such a

feature. The log-parsing approach assumes a

central entity that can receive and coordinate

between all clients to guarantee conflict

detection and resolution. Such an entity

constitutes a single point of failure that

jeopardizes reliability. This also creates a

performance hot spot as all coordination tasks

are performed on a single node. On the other

hand, in the distributed systems literature, the

concept of consensus has been developed and

used extensively in cases where distributed

entities need to agree on a single value (or plan)

and is used in multi-cloud storage systems.

However, utilizing consensus protocols (e.g.,

Paxos and its

variants), mandates inter client or inter-server

communication (active consensus). Nonetheless,

there has been a line of work that attempts to

map the consensus protocol to read/write

operations (i.e., passive consensus). For

example, the Paxos proposal phase is replaced

with file write. Then, based on reading the

written files, a proposal can be accepted or

rejected. Passive consensus eliminates the need

for communication but requires atomic

operations to be provided by the

cloud API.

III EXISTING SYSTEM

An additional and essential challenge that faces

multi-cloud storage systems is the heterogeneity

of consistency models followed by different

providers. Having a strict consistency

assumption or atomicity of operations from a

cloud storage provider is an impractical

assumption that should be avoided. Under such a

model, any read/write sequence results cannot

always be guaranteed to return the same results.

Nonetheless, a reliable multi-cloud storage

system should provide an application-level

mechanism that ensures data consistency despite

the lack of atomic operations or consistency

guarantees at the individual cloud level.

Limitations

➢ Client-side only.

➢ Lack of communication between clients.

➢ Lack of processing resources on passive

storage servers

IV PROPOSED SYSTEM

we investigate multi-cloud storage systems

and propose an application-level client-

centric consistency method that provably

detects data conflicts and resolves them.

Such a consistency feature will enhance the

usability of multi-cloud storage systems and

hence contribute to the establishment of

private, secure, and reliable storage to end

users.The contributions of this project are

summarized as follows:

 ISSN 2347–3657

 Volume 12 , Issue 2, April 2024

149

➢ Formally defining the data consistency

problem in the context of multi-cloud

storage systems

➢ proposing a novel method that guarantees

eventual data consistency in multi-cloud

storage systems with passive servers and

non-communicating clients

➢ implementing a multi-cloud storage

system that utilizes the proposed method to

demonstrate its performance empirically.

V ARCHITECTURE

 System Architecture

VI IMPLEMENTATION

User Module: User can register, Key

processing and File search. He user will

decrypt the Data file and Download the file

process will be done.

Cloud Module: In this module, Cloud will

be maintaining the Data in multiple clouds

and that data is Encrypted.

 Data Owner Module: In this module, Data

Owner will register, file upload and modify.

Data Owner will be create Encrypted key for

data file and if owner have that file decrypt

and download the data file.

 VII RESULTS

HomeScreen

Registration Page

 ISSN 2347–3657

 Volume 12 , Issue 2, April 2024

150

Owner Login Page

Upload Page

View page

Download page

Message Page

 ISSN 2347–3657

 Volume 12 , Issue 2, April 2024

151

Server and Files

VIII PERFORMANCE EVALUATION AND

ANALYSIS

 Comparison between the case when the data

consistency module is not activated versus the

case when it is activated. Fig. 6 shows actual

times for uploading files in the designed multi-

cloud storage system with and without the

proposed data consistency method. These times

include the partitioning, encoding, and

encryption of the data parts. As shown in the

figure, the overhead added by the data

consistency algorithm is roughly 5 seconds,

including the TTR and the time required for

temporary file renaming (third phase). The

additional 1 second that exists in the case of

conflict is mainly due to the conflict handling

mechanism (copying data to the new conflicted

copy) of our system, and not due to the

algorithm itself since, as shown earlier, the TTR

is the same whether there is a conflict or not.

IX CONCLUSION

we discussed multi-cloud storage systems and

their significant advantages in establishing trust

in the cloud. The paper focuses on addressing

the concurrent data access issue and reasons

why it is especially challenging in such systems

compared to conventional storage systems.

Various previous solutions to this issue were

discussed. The paper offered a useful formal

definition of data consistency and data conflicts

in a multi-cloud storage system and proposed a

novel method to detect data conflicts and

 ISSN 2347–3657

 Volume 12 , Issue 2, April 2024

152

maintain data consistency. The method: Does

not require inter-client or inter-server

communication. Avoids the reliability and

security issues associated with a single point of

failure as it does not require the help of any

server (a server-less system that runs fully on

the client’s machine). Utilizes passive cloud

storage services. Is scalable with respect to the

number of clouds. Is scalable with respect to

the number of users. Works as long as users of

 Multi-cloud storage system overlap in using at

least one cloud. Experimental results on real

cloud systems show an API calls-delay of

approximately seconds before uploading data to

the multiple clouds. The proposed algorithm is

best suited for a multi-cloud storage system that

requires data consistency while also being

scalable and tolerant to different cloud failures.

Future work might consider utilizing local

caching or API call optimization to minimize

the delay

