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ABSTRACT 

The main objective of this thesis is to study and analyze the small signal stability of the power system 

connected with wind generators, as the power generation using wind generators has gained importance in 

the recent days. Here, direct drive permanent magnet synchronous generator is considered in the 

investigation, and the small signal model is determined to survey the little unsettling influence 

steadiness. The eigen value examination researches the dynamic conduct of Power system under diverse 

modes. Thusly, by utilizing eigen esteem examination, the connection between the modes and the state 

variables are acquired. Along these lines by changing the controller parameters their impact on the eigen 

qualities are considered. The outcome demonstrates that the system security can be enhanced by 

appropriate tuning of both generator side and grid side converter controller parameters.Small signal 

model is developed for a grid connected PMSG based WECS. Eigen value analysis is performed for 3 

machine nine 9 bus  system using MATLAB/SIMULINK. 

 

I. INTRODUCTION 

The availability of electrical energy is a necessity for the functioning of modern societies. The 

energy consumption is increasing enormously in recent years, due to massive industrialization. The risks 

of shortage of fossil matters and their effects on the climatic change emphasis the use of alternate 

resource (renewable energy)[1-4].  

The various available renewable resources are solar, hydro, wind etc. The generation of electrical 

power from wind farms is developing rapidly with worldwide installed capacity. Currently India stands 

fifth in the production of electricity from wind farms after China, USA, Germany, and Spain. The 

installed capacity in India is 16,000 MW. 

Besides, of its advantage wind energy generation also has its disadvantages such as complexity, 

cost, and instability of wind speed. The cost disadvantage is reduced by subsidies from Government as 
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they are likely to promote the green power generation. On the other hand, cost of wind power is relatively 

lower when compared to other renewable energy resources[5-9].   

 The conduct of power system is primarily dictated by the conduct and communication of 

generators associated with it. At the point when the infiltration of wind production expands its impact on 

power system likewise increments. In this proposition, the impact of network associated variable rate 

wind vitality transformation system on the dependability of power system is considered[10-15]. 

 

II. MODELLING OF POWER SYSTEM COMPONENTS FOR STABILITY 

ANALYSIS 

Dynamic model of grid connected wind energy conversion system is required to achieve 

knowledge about ongoing change in the system due to increasing wind energy penetration. This chapter 

deals with the mathematical modelling of power system consisting of differential and algebraic equations 

representing the models of system components including synchronous generators, loads[16-19]. 

WIND TURBINE MODEL 

 The simple streamlined model is utilized to speak to the turbine, which depends on the power 

coefficient, Cp versus the tip speed proportion λ, typically given by the maker. The power extricated from 

the wind is given by 

br
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=   (2.1) 

The tip speed ratio is given by 

V

Rr =                (2.2) 

A general functional representation of CP is given by Lubosny (2003) as, 
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   C1 to C6 are constants.  The CP versus  curve is provided by the manufacturer. The 

constants C1 to C6  are computed for particular turbines using the procedure given by Heier (1998).   

 

MODEL OF SYNCHRONOUS GENERATORS 

 The synchronous generator representation considers the excitation winding on the d-axis and a 

damper winding on the q-axis. Here for stability study Type 1A model of synchronous generators are 

considered[20-24].

 The differential equations of synchronous generators 
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The stator algebraic equations are represented as follows 
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MODEL OF INDUCTION GENERATOR 

 The induction generator is spoken to by method for understood third order model. Utilizing again 

generator current convention, the electric torque of the induction machine is qiIqiEdiIdiEeiT '' +=
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A squirrel-cage induction machine connected to an AC power source of appropriate voltage can 

operate either as a motor or as a generator. The terminal voltage applied to the machine produces lagging 

magnetizing current, which in turn results in the rotating magnetic field within the air gap for both 

motoring and generating action. When the motor is loaded, current flows in short circuited rotor due to 

the rotor EMF and the motor runs at sub-synchronous speed[25-29].  

            When the induction machine runs at super-synchronous speed, a voltage is induced in the rotor in 

phase opposition to the EMF induced because of reversal of relative speed. The component of the stator 

current, which balances the rotor MMF, also reverses. The stator current now consists of magnetizing 

current as before and a component in phase opposition to the stator applied voltage. Thus the machine 

becomes an induction generator with external excitation. The induction generator can be represented by 

the well-known equivalent circuit shown in Fig 2.1. 

 

Fig 2.1 Steady state equivalent circuit of induction generator 

From Fig2.1, the current I1 can be written as, 
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The per-unit active power transferred from the rotor to the stator through air gap, called air gap power, is 

readily calculated from the equivalent circuit as, 
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Where, 
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MODEL OF PMSG 

Using Source convention, voltage equations of PMSG in d-q reference frame (q-axis leads d-axis 

in the direction of rotation)is 
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The flux linkage equations of PMSG is 


 qsiqLqs −=      (2.24) 




fds
= (2.25) 

 

The active and reactive power equations are given by 
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MODEL OF DRIVE TRAIN 

The rotor of wind turbine and generator are connected directly, so they can be expressed together 

by                      
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         Where      

                    H- Equivalent inertia time constant of whole drive train. 

𝑇𝑚- mechanical torque. 

𝑇𝑒 - Electro-magnetic torque. 

 

MODEL OF CONVERTERS AND THEIR CONTROLLERS 

 Here d-axis stator current ids is controlled to zero and q-axis stator current iqsis controlled to 

track the maximal input of the wind turbine torque(L.Yang et al 2010). 
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EQUATIONS OF GRID SIDE CONTROLLER 

 When the direction of q-axis is aligned with the voltage vector  

 , then Vdg=0. 
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EQUATION OF DC LINK VOLTAGE 
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             Where, C - Dc link capacitor. 

 

INTERFACING WITH POWER SYSTEM 

PMSG connected to 3 rd bus of 3 machine nine bus system through a transmission line and 

transformer. The voltage equation describing the interface with the external system can be written as 

 

iVV qgdgda
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 (2.40)                                      

iVV dgqgqa
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Where, L is sum of transmission line and transformer inductance. 

 

NETWORK MODEL 

 The system comparisons for generator buses are:
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Where i= 1: m no of machines. 

The network equations for load buses are: 
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Where i= m+1 to n no of buses. 
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III.SMALL SIGNAL MODEL OF POWER SYSTEM COMPONENTS 

In this approach, the network equations are written in power balance form. Although equivalent 

to the current balance form, it has some extra features. The extended DAE system Jacobian also contains 

information about the load flow Jacobian.  

SMALL SIGNAL MODEL FOR SYNCHRONOUS GENERATORS 

 Linearization of DAE power system model is carried out by adopting the concepts presented by 

Pai et al (2004). Linearising the differential Equations (2.5) to (2.9), 
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Where A1=Diag(A1i), A2=Diag(A2i), A3=Diag(A3i) and E=Diag(Ei) 
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Where B1=Diag(B1i), B2=Diag(B2i), B3=Diag(B3i)
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The network equations (2.42) and (2.45) are linearized to obtain
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C1 and C2 are block diagonal matrices and C3, C4, D1, and D2 are full matrices .The block diagonal 

matrices are
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Since ∆Ig is not of interest, it can be eliminated from using (3.2) and (3.3).Using ∆Igfrom (3.2) as 
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SLG (v) and SLl (v) are specified then (3.6) is in DAE form with the state vector ∆x and the algebraic 

vectors ∆Vg and ∆Vl. They can be rewritten as         
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INCLUSION OF INDUCTION 

GENERATOR
 

Linearising the differential Equations (2.12) to (2.14), 
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Linearising the stator algebraic Equations (2.15)  
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The linearized state model is added to the state space model by defining 
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  (3.10)                                                                        

And the resulting new state space model is shown in (3.11) 

Thus, the subsystem model corresponding to ∆XIG is added below ∆XSG. This results in a new non-zero 

sub-matrix A4 together with a block diagonal matrix AIG . 
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INCLUSION OF PMSG 

Linearising the differential Equations (2.1) to (2.4) and (2.22) to (2.41), 

The differential equations after linearisation 
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The real and reactive power equations are given by 
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Where,          
daoqgo VLid −=24         
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   (3.32) 

 

][ 4XXXVX vwdcPMSG = 

        

     (3.33)                                                                                                         

And the resulting new state space model is shown in (3.34) 

Thus, the subsystem model corresponding to ∆XPMSG is added below ∆XSG+IG. This results in a new non-

zero sub-matrix A4 together with a block diagonal matrix APMSG . The sub matrices D1 and D4 are 

modified to include the real and reactive power injections PMSG[30-38].  
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IV.RESULTS AND DISCUSSION 

 This Chapter presents the small signal stability analysis 3 machine 9 bus system consisting of two 

synchronous generators and one PMSG based WECS. Then one induction generator is included in the 

system. 
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 Table 4.1. Load Flow results for inclusion of  PMSG 

 

 

 

 

Table 4.2. Eigenvalues for 

inclusion of  PMSG 

MODES    EIGEN 

VALUES 

OSCILLATION 

FREQUENCY 

DAMPING 

RATIO 

𝛿3      0                0 0 

𝛿2, 𝜔2 -7.3571 +/-

52.5151i 

8.3580 0.1387     

𝛿1, 𝜔1 -1.2196 +/-

17.6519i 

2.8094 0.0689     

𝑉𝑑𝑐 , 𝑋𝑉 -2.6256 +/- 

6.5253i 

1.0385 0.3733     

𝐸𝑑2, 𝑋4 -5.6816 +/ 

3.1660i 

0.5039 0.8735     

BUS 

TYPE 

VOLTAGE 

   (in p.u) 

  PG 

(in  

p.u)        

QG (in 

p.u) 

-PL 

(in 

p.u) 

- 

QL(in 

p.u) 

Swing 1.040∠0.000 1.5403 0.2264 - - 

P-V 1.025∠0.0007 1.6300 0.0245 - - 

P-Q 1.039∠0.0025 - - 0.0158 0 

P-Q 1.031∠-

0.0014 

- - 0 0 

P-Q 1.0028∠-

0.0024 

- - 1.25 0.5 

P-Q 1.0202∠-

0.0027 

- - 0.9 0.3 

P-Q 1.0280∠-

0.0010 

- - 0 0 

P-Q 1.0193∠-

0.0023 

- - 1 0.35 

P-Q 1.039∠-

0.0025 

- - 0 0 
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𝐸𝑓𝑑1 -4.7928           0.4689 1.0000     

𝐸𝑓𝑑2 -4.9511           0 1.0000 

𝐸𝑞1 -0.0510           0 1.0000     

𝐸𝑞2 -0.2995           0 1.0000 

𝜔3, 𝑋𝑊 -17.2717 

+/-5.9178i 

0.9418 0.9460     

𝐸𝑑1   -3.2258           0 1.0000 

 

 

The system remains stable after suffering a small disturbance since all eigenvalues have negative real 

parts. Five complex conjugate eigen values represent the four oscillatory modes. The six negative real 

eigenvalues represent the three non-oscillatory modes. 

Table 4.3.Participation Factor for inclusion of  PMSG 

 

Table 4.4 Effect of wind variation (For 5 m/s  and 11.5 m/s) 

 

MODES EIGENVALUES                         WITH DISTURBANCES 
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INFERENCE FROM PARTICIPATION FACTOR MATRIX 

The participation factor gives the role played by a state variable in a particular mode. It is 

measure of relative participation of a state variable. 

Table 4.4 represents the Eigen values of PMSG with the effect of wind variation 5 m/s,11.5 m/s. The 

small signal stability analysis is performed for possible minimum (5 m/s) and maximum wind speed (11.5 

m/s).The result shows that the damping ratio of mechanical mode SG 1 reduced by 11%. The damping 

ratio of electrical mode of PMSG increases by 53.8%.  

Table 4.5. Load Flow results for inclusion of PMSG and Induction generator 

 WIND SPEED 5 m/s 

 

WIND SPEED 11.5 m/s 

𝛿3 0 0 0 

𝛿2, 𝜔2 -7.2238 +/-51.2405i -7.3019 +/52.2491i -7.3185 +/-51.483i 

𝛿1, 𝜔1 -1.0759 +/-17.6667i -1.2036 +/- 17.6471i -1.0687 +/-17.685i 

𝑉𝑑𝑐  , 𝑋𝑉 -5.7949 +/- 4.3239i -2.7721 +/- 6.4688i -6.3001 +/- 3.851i 

𝐸𝑑2, 𝑋4 -5.5550 +/- 3.0689i -5.6896 +/- 3.1580i -5.4845 +/- 2.893i; 

𝐸𝑓𝑑1 -4.8276 -4.7945 -4.8419 

𝐸𝑓𝑑2 -4.9476 -4.9512 -4.9438 

𝐸𝑞1 -0.0601 -0.0521 -0.0602 

𝐸𝑞2 -0.2847 -0.2974 -0.2852 

𝜔3, 𝑋𝑊 -17.2717 +/- 5.9178i -16.9417 +/- 6.8053i -17.2992 +/- 5.8369i 

𝐸𝑑1 -3.2258 -3.2258 -3.2258 

BUS TYPE VOLTAGE 

   (in p.u) 

  PG (in  

p.u)        

QG (in p.u) -PL (in p.u) - QL(in p.u) 

Swing 1.040∠0.000 1.5403 0.2264 - - 

P-V 1.025∠0.0396 1.6300 0.0306 - - 

P-Q 1.0388∠-0.141 - - 0.0158 0 

P-Q 1.0308∠-0.0824 - - 0 0.05 

P-Q 1.0027∠-0.1393 - - 1.25 0.5 

P-Q 1.0201∠-0.1538 - - 0.9 0.3 
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Table 4.6. Eigenvalues for inclusion of  PMSG and Induction generator 

MODES    EIGEN VALUES OSCILLATION 

FREQUENCY 

DAMPING RATIO 

𝛿4 0 0 0 

𝜔2, Em -10.8513 +/- 8.330i 1.3259 0.6292 

𝛿1, 𝜔1 -0.5891 +/- 8.2051i 1.3059 0.0051 

Er -9.5838 0 1.0000 

𝑉𝑑𝑐   , 𝑋𝑉 -2.6262 +/- 6.5251i 1.0385 0.1394 

𝑋4,𝐸𝑓𝑑1,𝐸𝑓𝑑2 -3.2269 +/- 2.9459i 0.4689 0.5454 

𝑋4,𝐸𝑑1,𝐸𝑑2 -3.6426 0 1.0000 

𝐸𝑓𝑑1, 𝐸𝑞1 -3.0898 +/- 1.4465i 0.2302 0.8202 

𝐸𝑞2 -1.4786 0 1.0000 

𝛿1, 𝛿2 -0.0000 0 1.0000 

𝛿1, 𝜔1,𝛿2, 𝜔2 -0.3474 0 1.0000 

𝜔4, 𝑋𝑊 -17.2717 +/- 5.917i 0.9418 0.8949 

𝐸𝑑1 -3.2258 0 1.0000 

 

 

INFERENCE FROM EIGENVALUES  

                     The system remains stable after suffering a small disturbance since all eigenvalues have 

negative real parts.Six complex conjugate eigen values represent the four oscillatory modes. The six 

negative real eigenvalues represent the three non-oscillatory modes. 

P-Q 1.0280∠-0.0572 - - 0 0 

P-Q 1.0193∠-0.1319 - - 1 0.35 

P-Q 1.0388∠-0.1419 - - 0 0 
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Table 4.7.Participation Factor for inclusion of  PMSG and Induction generator 

 

          The participation matrix gives the role of state variables in particular modes. The state variables 

that influences the modes are shown in table 4.5.               

 

OPTIMISED VALUES 

Tuned Parameters values for inclusion of PMSG 

Kpw=11.3112 p.u    Tw=0.4941sec     

Kpv=8.2219 p.uTv=0.1641sec    

            Kp1=2.8264 p.u   T4=0.1587 sec 

 

Table 4.8.ImprovedEigenvalues for inclusion of  PMSG 

 

               NO    EIGEN VALUES 

        (*e0.02) 

OSCILLATION 

FREQUENCY 

DAMPING RATIO 

1 0 0 0 

2 -0.7506 0 1 
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3,4 -0.0738 +/- 0.5281i 8.4050 0.1384 

5,6 -0.0124 +/- 0.1765i 2.81 0.0701 

7,8 -0.0555 +/- 0.0397i 6.3 0.8133 

9 -0.0661 0 1 

10 -0.0473 0 1 

11 -0.0496 0 1 

12 -0.0005 0 1 

13 -0.0030 0 1 

14 -7.5328 0 1 

15 -0.0201 0 1 

16 -0.0323 0 1 

 

Table 4.9.ImprovedEigenvalues for inclusion of  PMSG and Induction generator 

             NO    EIGEN VALUES 

       (*e0.02) 

OSCILLATION 

FREQUENCY 

DAMPING RATIO 

1 0 0 0 

2 -0.6913 0 1 

3,4 -0.1085 +/- 0.0833i 1.33 0.7932 

5,6 -0.0059 +/- 0.0820i 1.31 0.0718 

7 -0.0959 0 1 

8 -0.0688 0 1 

9,10 -0.0267 +/- 0.0290i 0.46 0.6773 

11,12 -0.0346 +/-0.0131i 0.21 0.9352 

13 -0.0000 0 1 

14 -0.0035 0 1 

15 -0.0100 0 1 

16 -0.0236 0 1 

17 -7.0080 0 1 

18 -0.0279 0 1 

19 -0.0323 0 1 
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Tuned values for inclusion of PMSG and induction generator 

Kpw= 10.5359 p.u Tw=  0.3592 sec 

Kpv=7.6496  p.uTv=0.1591 sec 

             Kp1= 1.8919   p.u    T4= 0.2298 sec 
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