

 SNNO: 2347–3657

 Volume 9,Issue2 JUNE ,2021

Software Defect Prediction Under the

Impact of Deep Learning Algorithms

SURABIKA HOTA

ABSTRACT

Early software flaw detection is crucial for increasing software quality and lowering the costs, time, and effort required for software

development. Software faults prediction (SFP) has made extensive use of machine learning (ML), and ML techniques provide a variety

of benefits.

results for fault prediction in software. Deep learning excels in a number of fields, including voice recognition, computer vision, and

natural language processing. In this research, the performance of two deep learning algorithms—Multi-layer perceptrons (MLPs) and

Convolutional Neural Networks (CNN)—is examined in order to address potential influencing variables.

The results of the experiment demonstrate how changing certain factors directly affects the improvement that occurs; these parameters

are changed until the right value is found for each one. Additionally, the results demonstrate that the impact of changing the parameters

had a significant impact on prediction accuracy, which increased significantly in comparison to the conventional ML algorithm. The

tests are run on four widely used NASA datasets to verify our presumptions. The outcome demonstrates how the parameters addressed

may boost or lower the measurement of the fault detection rate. Up to 43.5% for PC1, 8% for KC1, 18% for KC2, and 76.5% for CM1

showed improvement.

INDEX TERMS

Deep learning methods, classication, hyperparameters, and software fault prediction.

INTRODUCTION

The most difficult task for software developers is

creating high-quality software. For such, software

development needs go through a series of tasks

under certain conditions.

limitations to develop dependable and high-quality

software. The presence of errors, which degrade

software quality and render final products

unreliable and unsatisfactory, is a significant

disadvantage of having excellent quality and

trustworthy software. [1] Reference The software

development cycle must be well planned and

controlled in order to produce high-quality

software.

Faults are inescapable and may appear at any stage

of the software development process. Software

fault prediction, which prevents learning and helps

to decrease software failure, is one of the high-

quality models that may be used to enhance

software fault prediction.

It's very difficult to create software that is error-

free.Most of the time, even when a team

meticulously follows development procedures,

unanticipated deciencies and undiscovered bugs

may still surface.

ASSISTANT PROFESSOR, Mtech,Ph.D

Department of CSE

Gandhi Institute for Technology,Bhubaneswar.

 SNNO: 2347–3657

 Volume 9,Issue2 JUNE ,2021

To effectively plan and manage testing and project

maintenance, it is necessary to anticipate probable

software flaws. The development team will have

additional opportunities to run testing many times

on modules or lessons with a high fault probability

thanks to fault prediction. This will make the

defective modules more prominent. The likelihood

of eliminating the remaining flaws will thus rise,

and any software products made available to end

users will be of higher quality.

Additionally, this strategy reduces the project's

maintenance and support requirements. Evidently,

software flaws may lead to low-quality software.

Since fixing these flaws needed a lot of work, SFP

has been used to lessen their effects.

The SFP also decreases the expenses, amount of

time, and effort needed to produce software

products [3]. The expense of finding and fixing

errors is said to be the most costly software

development activity in reference [38]. an

abundance of

 For the purpose of predicting software faults,

studies utilizing support vector machines and

genetic algorithms have been carried out [42].

Affective Neural Network

Decision tree [44], (ANN) [43], etc. There should

be more research done.

The following questions were addressed by Muet

al. [45] in their discussion of various deep learning

techniques: what are the most popular deep

learning models and methods for optimizing them;

do they frequently use open source frameworks;

what are the most pressing current issues; and what

are the suggested future solutions. By identifying

the most relevant materials and findings, their

systematic review helped us save time and effort.

Deep learning algorithms were utilized in this study

while also considering the drawbacks of the earlier

ones.

Deep Learning is a field of machine learning that

employs supervised and/or unsupervised

approaches to learn from several layers of neural

networks.

This has had enormous success in a variety of

fields [34].

Computational models with numerous layers may

learn representations of data at various degrees of

abstraction thanks to deep learning [9]. It

automatically separates the most important

characteristics from the raw data and strengthens it

against input fluctuations [33].

Deep learning can also manage enormous volumes

of data, provide a variety of models that allow for

the use of unlabeled data to discover relevant

patterns, and allows for the sharing of

representations across various tasks [13].

Convolutional Neural Networks (CNNs) use the

convolution mathematical process [5]. It belongs to

the feedforward neural network family [10]. CNNs

are made up of combinations of stacked

convolutional layers that have been split into

smaller convolutional layers in order to simplify

the computation. Each pooling layer is often

positioned after a convolutional layer. Max pooling

(subsampling) layers that conform one or more

pairs. Then, as seen in Figure 1, fully-connected

layers and the nal layer are more elegant.

 SNNO: 2347–3657

 Volume 9,Issue2 JUNE ,2021

Depending on their relative positions, neurons in

the convolutional layer are linked to neurons in the

next layer.

Forward propagation is a technique used in CNN's

training process to calculate the true classication of

the input data.

The trainable parameters were updated using

current parameters and back propagation to reduce

discrepancies between the output of the classication

process and what was wanted. CNNs

using the back propagation approach for training. It

starts by randomly allocating initial weights over

the whole network, after which the weight will

update.

One benefit of CNN is weight sharing, which

lessens the requirement for calculation.

Additionally, each stage of the nonlinear

computation uses max pooling to decrease the

amount of the input data, and subsampling the

outcome reduces distortion. The number of

connections, shared weights, and downsampling all

decrease when the number of parameters is reduced

[11]. Better speed, memory savings, and reduced

computational complexity are all benefits of CNNs.

The multilayer perceptron or feedforward deep

network is the primary illustration of a deep

learning model (MLPs).

Deep Learning's accuracy and capacity to handle

complicated applications are both constantly

improving [5]. The fundamental deep learning

model is the multilayer perceptron (MLP).

Deep neural networks, which are extensions of

artificial neural networks (ANNs) with many

hidden layers, have gained popularity as a result of

their astonishing performance improvements on

challenging learning tasks and their effectiveness in

a variety of machine learning applications. Deep

neural networks are thus winning out over shallow

networks. The deep neural network includes

intricate topologies and hundreds of hyper-

parameters. Additionally, the design decision is

crucial since finding the ideal architecture for a

given challenge is often what separates success

from failure. The developer recently concentrated

on creating unique structures for brand-new issues.

Higher complexity functions are represented when

the number of layers and units is increased.

Deep Learning Algorithms are used in a variety of

studies to examine its potential for SFP.

Failures of software may result in lost time, money,

and other things. Software should be fault-free

since software reliability has become the industry's

and community's top issue. Numerous scholars

have examined software failure prediction using a

variety of methodologies, each of which offers a

different level of accuracy. Deep learning

is particularly successful in a variety of fields,

including voice recognition, natural language

processing, and image processing.

the use of deep learning to the prediction of

software faults may provide a fresh contribution to

improving fault prediction accuracy as compared to

current methods.

In this investigation, the following research

questions are addressed:

1. Can the software defects prediction performance

be used by deep learning?

2. Does the model's altering architecture

accuracy of algorithms being improved?

3. What deep learning techniques provide the

highest SFP performance?

The suggested model's significance may be

summed up as follows:

measuring the efficiency of deep learning

algorithms for SFP, identifying the optimal

algorithm quality, and assessing the efficiency of

changing the deep learning algorithms' design. The

method will enable developers and testers to

concentrate on the code, which will ultimately

reduce testing and maintenance costs while also

improving the program and boosting overall

product dependability.

This paper's major contribution is an investigation

into the variables that could affect how well deep

learning systems work in the context of SFP. In this

study, two basic algorithms—Multi-layer

perceptrons (MLPs) and Convolutional Neural

 SNNO: 2347–3657

 Volume 9,Issue2 JUNE ,2021

Networks—are used to carry out the tests and track

the effects on the components (CNN). These

elements include the number of layers, epochs,

batch size, dropout rate, and optimizer. The result

section includes a detailed discussion of a number

of comparisons that were made.

LITERATURE REVIEW

The most significant pertinent works that addressed

SFP are reviewed in this part, together with the

prior findings for the state-of-the-art using ML,

NN, and Deep Learning.

There are several studies that show how to increase

software quality, make better use of resources, and

reduce or eliminate error.

To assure comprehension of the characteristics of

SFP, it is vital to investigate these studies.

MACHINE LEARNING

The effective use of ML in SFP has left more room

for improvement in prediction accuracy, hence [12]

proposes collaborative representation classication

(CRC) based soft- ware defect prediction (CSDP)

method, designed to categorize if the questioned

software modules are defective or not. In the

experiment, 10 datasets from NASA MDP were

used, and the suggested method was compared

against weighted Naive Bayes (NB), cost-sensitive

boosting neural network (CBNN), compressed

C4.5 decision tree (CC4.5), and coding-based

ensemble learning methods (CEL). The outcome

suggests

that the suggested technique performed the best.

Majority Vote based Feature Selection algorithm

(MVFS), developed by Borandag et al. [39], was

used to determine the most important software

metrics.

They tested the effectiveness of MVFS using

combinations of machine methods and lter

(Information Gain, Symmetrical Uncertainty

ReliefF feature, Correlation- based approach). They

employed PC1, CM1, KC1, and JM1. The findings

demonstrate that the MVFS technique may improve

defect prediction performance by identifying the

most crucial software metrics. In order to improve

prediction accuracy and shorten processing time,

Reference [40] suggested model incorporates a

modified under-sampling approach and a

correlation feature selection with ensemble

learning. The model has been applied to 10 open

source datasets. The results of the studies

demonstrated that the suggested model performed

flawlessly throughout the prediction process; the

improvements in terms of F1 measure went up to

96%.

The following methods forecast the error for the

unsupervised data using a clustering model. They

propose and assess novel methods, such as K-

Sorensen-means clustering, a new SFP clustering

technique for K-means that calculates cluster

distance using the Sorensen metric. Three

datasets—JM1, PC1, and CM1—are included in

the suggested methodology.

The findings demonstrate that K-Sorensen

clustering outperforms K-Canberra means [14].

Few studies have used clustering for SFP because it

is difficult to determine the number of clusters. To

solve this problem, expectation-maximization (EM)

and the Xmeans model proposed by [15] were used

to predict errors when training data were absent.

The experiment used data from the AR3, AR4, and

AR5 PROMISE repository. The results of the

investigation demonstrate that the Xmeans model

outperforms the EM and another model from

earlier studies.

Furthermore, accuracy increases and reaches

90.48% when data are used without feature

selection. Wahono and Herman [16] proposed a

strategy that merged the bagging method to address

the class imbalance issue with the genetic approach

to address feature selection. This model is used on

 SNNO: 2347–3657

 Volume 9,Issue2 JUNE ,2021

nine NASA datasets, comparing the results from

SVM, DT, NN, and statistical classifiers. The best

prediction performance was achieved by SVM,

which achieved 89.9%. In contrast to filter-based

feature ranking strategies like information gain and

gain, Wang et al. [17] provide examples of feature

ranking methodology.

NB, multilayer perceptron, KNN, SVM, and

logistic regression are used in the models'

construction. The PROMISE data repository

provides three datasets. Findings indicate that the

The performance of ensemble technique is superior

to that of any other individual ranker.

NEURAL NETWORK APPROACH

Neural networks typically include three parts. First

are neurons. Simple computing cells are used. Each

neuron has the ability to take in impulses, analyze

them, and finally act.

create a signal output. To attain high performance,

neural networks need extensive connections

between one another.

Figure 2 depicts a model of a neuron with a series

of connecting connections, each of which contains

an adder for summing the input and an activation

function in addition to a weight.

The design of the network is the second element.

The feed-forward network, which consists of an

input layer, a hidden layer, and an output layer, is

the most popular form of neural network design. In

a feed-forward network, data flows from input

nodes to hidden layers and output nodes, as

illustrated in Figure 3, from left to right in the

neural network. The third is a learning algorithm,

which is a term used to describe a procedure that

modifies the weights of the network to lessen

output error.

The back propagation algorithm is used to

repeatedly train the weights as the mistakes are sent

back from the output layer [6], [7]. A neural

network's massively parallel distributed topology

and capacity for learning provide it with its

computational power.

These talents enable it to find effective answers to

challenging issues. [7] Reference In comparison to

the human brain, neural networks can accomplish

difficult tasks and demonstrate their superiority in

problem solving. This was clear in a number of

fields, including classical analysis, pattern

recognition, and voice recognition. NN is a popular

supervised learning approach [8] (reference [4]). In

reference [4], a neural network model was created

to evaluate performance using the accuracy-

oriented mean squared error function. Gradient

descent was used in the model's development.

Three components commonly make up neural

networks. Neurons are the first. The usage of basic

computing cells. Every neuron has the capacity to

receive impulses, process them, and then

act.Output a signal, please. Neural networks need a

lot of connections between them in order to operate

well.

In Figure 2, a model of a neuron is shown with a

network of connections, each of which has a

weight, an adder for summing the input, and an

activation function.

The second component is how the network is

designed. The most common kind of neural

network architecture is the feed-forward network,

which has three layers: an input layer, a hidden

layer, and an output layer. Data travels from input

nodes to hidden layers and output nodes in a feed-

forward network, as shown in Figure 3, from left to

right in the neural network. The third is a learning

algorithm, which is the name given to a process

that adjusts the network's weights to reduce output

error.

 SNNO: 2347–3657

 Volume 9,Issue2 JUNE ,2021

As errors are conveyed back from the output layer,

the back propagation technique is utilized to

continually train the weights [6], [7]. The

computing strength of a neural network comes

from its massively parallel distributed architecture

and learning capability.

It is able to solve complex problems because to

these skills. Reference: [7] Neural networks can

complete challenging tasks and show why they are

better at solving problems than the human brain.

This was evident in a variety of domains, including

speech recognition, pattern recognition, and

classical analysis. NN is a well-liked supervised

learning technique [8]. (reference [4]). A neural

network model was developed to assess

performance using the accuracy-oriented mean

squared error function in reference [4]. The model

was created using gradient descent.

The method is divided into four parts, beginning

with the extraction of tokens from numerically

encoded vectors using Abstract Syntax Trees

(ASTs). Then it uses CNN.

and incorporates it with conventional defect

prediction tools.

In order to determine if the code les are

experiencing bugs or not, it employs the Logistic

Regression. The trials, which were conducted

across seven open source projects, demonstrate a

12% average improvement of the state-of-the-art

approach by the DP-CNN. A prediction model

capable of autonomously learning characteristics

for describing source code that has been utilized for

defect prediction is created by Dam et al. [19].

They use an LSTM that is immediately compatible

with the Abstract Syntax Tree representation of

source code, which is tree-structured (ASTs). To

better reflect the syntactic structure and depth of

semantics in source code, the model is constructed

as a tree-structured network of LSTM units. The

model's function results from training are used to

automatically determine if new hires are faulty,

whether they are working on the same project or a

different one. Additionally, it is able to identify the

components in a source code that almost certainly

lead to a flaw. This helps in comprehending and

recognizing precisely what the model is taking into

account, as well as to what extent it has certain

flaws.

Their methods consist of four main stages: I

parsing a source code file into an Abstract Syntax

Tree; (ii) embedding AST nodes, which map the

label names of each AST node into a continuous-

valued vector of x length; (iii) feeding the AST

embeddings into a tree-based network of LSTMs to

obtain a vector representation for the entire AST;

and (iv) using a classifier like Logistic Re

They conducted an analysis of the Samsung

dataset, which includes datasets from the

PROMISE repository and open-source initiatives.

The outcome of this methodology proves that it can

be used in actual practice.

The performance of the models is impacted by

existing features and tree structures that sometimes

fall short of capturing the semantics of programs.

Previous research have focused on extracting

features using tree representations of programs.

[2] suggested a technique to automatically learn

fault characteristics in order to thoroughly explore

the semantics of programs. They used CNNs based

on directed graphs (DGCNNs) to learn semantic

characteristics. The crucial process for the concept

is creating Control Flow Graphs (CFGs) using

Linux's gCC and assembly code.

to get a program's graph representation. CFG is

designed to explain how assembly instructions are

executed and reveal how the program behaves. The

To create models based on CFG data, another step

is to apply a graphical model to CFG datasets that

comprise multi-view multi-layer CNNs for directed

labeled graphs.

 SNNO: 2347–3657

 Volume 9,Issue2 JUNE ,2021

In the first stage, a vertex is represented as a

collection of real-valued vectors according to the

number of views. Apply two convolution layers,

then a dynamic pooling layer, and then compile all

of the extracted features from the graphs into a

vector. The last stage involves sending a feature

vector to an output layer and a fully-connected

layer to calculate the category distributions for

potential outcomes, as shown in Figure 4.

Four datasets (SUMTRIAN, FLOW016, MNMX,

and SUBINC) were collected from the CodeChef

website and used in the experiments. They used a

number of machine learning methods to create NN,

SVM, and KNN prediction models. In comparison

to the feature-based strategy (increase from 4.08%

to 15.49%) and the tree-based technique

(improvement from 1.20% to 12.39%), this

approach performs the best.

citation [41] For defect prediction, they coupled the

Long Short- Term Memory (LSTM) algorithm with

word embedding. The first step in the suggested

model's three-step structure pulls a token from its

abstract syntax tree.

Second, a vector is created from the token. Third,

create a long short-term memory using the vector

and its labels.

The LSTM algorithms identify defects by

automatically picking up on program semantic

data. The studies conducted on eight open-source

projects demonstrate that the suggested model

works better than cutting-edge fault prediction

techniques. Utilizing deep learning algorithms for

prediction yields encouraging results; some

recently published research employed CNN and

MLP without addressing the efficacy of altering the

key variables that may directly affect the

performance of prediction [46, [47].

PART III: RESEARCH METHODS

We began reviewing the fundamental design

processes in this part, which called for employing

MLPs and CNN to anticipate software defects

using NASA datasets. stages in the approach,

As a first step, we chose four datasets with different

defect rates, normalized them for these datasets,

and then continued. When first applied, the MLP

modifies its settings.

Finally, we compared the outcomes to identify the

best outcomes obtained and followed the same

procedures for CNN. The Python 3.6 language is

used to build the MLP and CNN algorithms.

To carry out the studies, a variety of libraries

(including Keras, Numpy, Panda, Sklearn, and

Matplotlib) were used. The following subsections

go into deeper depth about each step after that.

Figures 5 and 6, respectively, provide an overview

of our suggested technique and the pseudocode.

SELECT DATASET, first.

The datasets are taken from the NASA Metrics

Data Program (MDP), and they comprise data from

software measurements and related error

information gathered. In order to promote

repeatable, verifiable, debatable, and/or improved

 SNNO: 2347–3657

 Volume 9,Issue2 JUNE ,2021

prediction models of software engineering, NASA

MDP dataset is made accessible to the general

public.

B. REGULATION

When a numerical attribute may find new ranges

from an existing range using an equation,

normalization is applied.

It is carried out during the preprocessing stage and

is helpful for distance measurements and

classication algorithms like NN (KNN, clustering).

This research used the standardization approach to

maintain the natural distribution of the qualities. To

change characteristics with a Gaussian Distribution

and various means and distributions,

standardization is an effective strategy. We use a

Standard Scaler from the scikit-learn module in

Python. The Standardization formula is shown in

equation (1) below.

C. USING DEEP LEARNING METHODS

During this stage, we used two algorithms (MLPs

and CNN) to examine how well they might

improve the accuracy of SFP and identified the

performance-influencing factor.

Choosing the various layers, functions, and

hyperparameters for each experiment will be done

in this stage.

Once we are satisfied with the outcome, we repeat

the procedure.

Modifying the model parameters.

The network's parameters must take into account

the hyper-parameter activation function and the

number of layers in each layer.

1) HIERARCHIVE PARAMETERS

For each test scenario, a different hyper-parameter

will be changed to see how it affects accuracy. To

choose the proper parameters and get the intended

outcomes, tuning the hyper-parameter is essential.

Although there are no specific guidelines for

selecting the ideal parameters, the decision often

depends on the nature and scope of the training

dataset. Selecting the appropriate parameters is

crucial, but it is a challenging aspect of network

training. Hyper-parameter tuning, however,

typically relies more on practical expertise than on

theoretical understanding. Due to limitations like

 SNNO: 2347–3657

 Volume 9,Issue2 JUNE ,2021

memory limits, trade-offs are an inherent part of

parameter selection [22].

Before documenting the findings of our research's

many tests, we examined and assessed the hyper-

parameter values for each method. When one of

these hyperparameters has been optimized, work on

additional hyperparameters to get the optimum

outcome. Compare the settings that help algorithms

perform better after that.

Remove any values that have a negative impact on

the algorithms' outcomes as well. Compare the

settings that help algorithms perform better after

that.

Remove any values that have a negative impact on

the algorithms' outcomes as well.

Below is a list of the hyper-parameters settings:

Epoch count: An epoch is the total number of times

the data set has been traversed [22]. To find the

optimal number of epochs for the network to

properly converge, we will vary the number of

epochs in our experiment from 10 to 20000. The

amount of training samples makes up the batch

size. The number of predictions that may be

produced at once is controlled by batch size, along

with the model. The increased batch size often

requires more RAM. citation [23] Contrarily,

small-batch sizes are preferred since they lead to

convergence in a condensed number of epochs

[24].

Test batches will range in size from 1 to 20.

Dropout rate: Dropout is a strategy for mixing

exponentially many distinct neural network

topologies effectively while also preventing over-

tetting. The falling of troops happens at random

[31]. As seen in Figure 7, dropping out units in a

neural network means temporarily eliminating each

unit together with all of its incoming and outgoing

connections.

In addition to being used to graphical models like

Boltzmann Machines, the dropout is utilized to feed

forward neural networks [32]. Increments of 0.1

will be used to test various dropout rates between

0.2 and 0.6. Updated weights are applied at the

back propagation step to decrease error using the

optimizer function.

Adam (adaptive moments) and Adagrad (adaptive

gradient) are the two optimization functions we'll

be using [5].

2) THE NUMBER OF LAYERS

The performance of the networks may be strongly

influenced by a variety of factors, including the

presence of hidden layers and neurons in those

levels. The quantity of layers increases.

3) ACTIVATION FUNCTION

An artificial neuron's activation function

determines its output based on an input or

combination of inputs.

Each activation function executes an after receiving

one x input unique mathematical analysis on it.

Deep neural networks frequently use the activation

functions sine, rectilinear unit, and hyperbolic

tangent. Sigmoid: a popular back propagation NN

metric. The range only extends over (0, 1). It is a

suitable extension of nonlinearity that restricts

earlier uses in NN and also exhibits a suitable level

of smoothness [26]. The following formula (2)

disallows the Sigmoid function:

The ratio of the hyperbolic sine and cosine

functions is known as the hyperbolic tangent

(Tanh) [27]. The formula (3) denies the Tanh

function as follows:

 SNNO: 2347–3657

 Volume 9,Issue2 JUNE ,2021

Rectified linear units (ReLUs) are extensively

utilized to train a deeper network than Sigmoid by

acting as an activation function for the hidden

layers in a Deep Neural Network.

Tanh's activation processes. ReLU enables Deep

Neural Networks (DNN) to learn from complex,

high-dimensional data more quickly and

effectively. The main benefit of ReLU is that it

only requires comparison and multiplication, not an

expensive computation. ReLU is a particularly

good option for DNN because it provides an

efficient backpropagation without exploding or

disappearing gradient [28].

Swish: is a smooth, non-monotonic function with

no upper or lower bounds and similarly or very

similar results.

performs better than ReLU on the deep neural

network across a range of difficult datasets. As f (x)

D x Sigmoid(x), Swish dened [29].

E. COMPARISON

To evaluate the impact of changing the investigated

parameters (hyperparameter, number of layers and

neurons, activation function), a comparison will be

performed.

function).

F. DATA ANALYSIS & INTERPRETATION

This research evaluates the performance of several

deep learning algorithms for classification. Use,

Detection Rate, and TNR, which are calculated by

taking into making both optimistic and pessimistic

predictions about things. The following formulae

may be used to calculate the performance

indicators:

The sensitivity or detection rate measures how well

positive instances were recognized. Specify the

frequency with which the fault will be positive if

the class has a fault. (The percentage of genuine

positive results)

D TP/ D = Detection Percentage (TPCFN). The

accuracy of a forecast is the degree to which the

prediction corresponds to reality, expressed as a

percentage. Accuracy

G. HARDWARE SPECIFICATION

It was determined that two computers would be

sufficient for testing the implementation, and those

machines were utilized throughout the development

process. The first, a laptop computer, was mostly

used for preparing for and presenting quick and

painless diagnostics The second was a virtual

computer borrowed from the Computer Center, and

it was utilized mostly for long-term testing.

H. SOFTWARE SPECIFICATIONS

The Ubuntu 18.04.1 LTS version of Linux was

installed on the virtual computer. The majority of

its applications

 SNNO: 2347–3657

 Volume 9,Issue2 JUNE ,2021

in order to give the most objective testing possible,

testing is performed without providing any extra

services to the client. Ubuntu 18.04.1 LTS was

used as the OS on the laptop.

IV. RESULT

Both the MLPs and the CNN are written in Python

3.6.5, with Keras Frameworks used for

implementation. Moreover, the Numpy, Panda, and

Sklearn libraries were employed. An array of visual

tools is used for the development environment was

based around the Matplotlib library and Spyder.

Nothing in this work has been developed in

isolation from the other. We conducted over two

hundred tests varying the (hyper-parameter),

(activation function), and (layer count) of the

system. Modifying the parameters of the model to

achieve better results is the subject of the

experiments. The obtained results are presented in

the following subsections.

MLPS RESULT

The MLPS Outcome A.

The impact of (epochs, batches, dropout rate,

Optimizer, layers, and activation function) is

addressed by the

tables 3–8 detail the outcomes that the suggested

method, using MLPs algorithms, was able to attain.

As shown in table 3, we conducted an experiment

using MLPs to investigate the impact of the epoch

number. According to table 4, we carried out the

following tests to investigate the impact of batch

size.

PREVALENCE OF ATTRIBUTION The

experiments listed in table 5 were conducted to

analyze the impact of the attrition rate.

OPTIMIZER The following tests were conducted

to evaluate the impact of Optimizer and are detailed

in table 6. Adgrad provided more reliable detection

and accuracy rates.

COUNT OF SHEETS Table 7 details the trials we

ran to determine the impact of varying layer counts.

 SNNO: 2347–3657

 Volume 9,Issue2 JUNE ,2021

PURPOSE OF ACTIVATION As shown in table 8,

we conducted the experiments below to investigate

the impact of activation function.

CNN RESULT

The suggested method used MLPs techniques to

produce the following outcomes by adjusting the

parameters (number of epochs, batch size, number

of layers, activation function). Tables 9, 10, and 11

provide details.

EPISODE COUNT We ran the experiment on

CNN shown in table 9 to analyze the impact of

epoch number.

SIZE OF EACH BATCH See table 10 for details of

an experiment we ran on CNN to measure the

impact of different batch sizes.

COUNT OF SHEETS The experiment we ran on

CNN is detailed in table 11, and it was designed to

assess the impact of a variety of layer

configurations.

C. COMPARE AND CONTRAST

PERFORMANCE COMPARISONS Metrics

The top outcomes from both algorithms are shown

in Table 12. In this case, the findings favor CNN

significantly.

Time and experiment count comparisons

Differences in the time and number of experiments

required to obtain the success with both algorithms

that is satisfactory.

Summary results for experiments with MLPs and

CNNs showing improvements as parameters were

adjusted based on detection rate are shown in

Tables 14 and 15.

V. DISCUSSION

We analyze the proper settings of the CNN and

MLPs algorithms that provide us relevant

predictions in order to discuss and comprehend the

findings.

MLPS

Based on experimental results on MLPs algorithm,

the pro- posed approach obtained the effective,

which achieved by modifying the network

parameters as follows:

THE EFFECT OF THE HYPERPARAMETER

The num-

ber of epoch had a signi_cant effect, especially in

increasing the Detection rate. When we increase

epoch number then all of the following are

increased: the Detection rate, the accu- racy and the

model ability to predict faults. For example, when

applying to the PC1 dataset and increasing the

number of the epoch from 1000 to 10000, the

Detection rate ratio increases from .012 to .363 and

accuracy from 92 to 93.5.

However, after reaching the optimal number of the

epoch,

 SNNO: 2347–3657

 Volume 9,Issue2 JUNE ,2021

the ratio of the TNR drops and, there is a

consequent \sdecrease in the accuracy. For

example, when applying to\sthe KC1 dataset and

increasing the number of the epoch from the ideal

number (15000) to 25000, the percent- \sage of

TNR declines from .931 to.894 and the accuracy

\sof .854 to .849. The influence of the batch size is

comparable to \sthat of the epoch. As the batch size

grows, the accuracy \simproves, until it reaches the

ideal size. After then, any \sincrease in the batch

size leads in a drop in accuracy.

For example, when the batch is adjusted from 5 to

7 and then \sto 10, the accuracy and TNR vary as

follows: accuracy \s(.891- .899-.891), TNR (.968-

.975-.957). (.968-.975-.957). The findings showed

\sthat the best dropout rate was when using the

value (.5) except \sPC1 where it was (.2). (.2). This

may be due to a tiny percentage \sof errors that PC1

possesses. Also, the Agrad optimizer is superior

than \sAdam.

THE EFFECT OF THE NUMBER OF LAYERS

The use \sof �ve layers for the PC1 and KC1

dataset produced the best \sresult, in terms of

accuracy, Detection rate, TNR. On the other

\shand, KC1 and KC2 delivered the greatest

outcomes when employing three \slayers. In both

situations with a larger number of layers, \sthe

Detection rate is enhanced while diminishing the

TNR of the \sdata that affects the accuracy.

Through the findings mentioned \sabove, the

number of layers is variable according to the

\sdatabase itself. There may be a link between

ratios \sof defects and the number of cases with the

optimal number \sof the layers. This is what we

will aim to explore and investigate \sin future

studies.

THE EFFECT OF THE ACTIVATION

FUNCTION by \scomparing the outcomes in which

several activation functions\swere utilized, the

ReLU exhibited better results over other activation

functions.

B. CNN ALGORITHM

Based on our research and the data we acquired

from \sthese trials, there was an influence caused

by modifying \sthe network design. This impact

was as follows:

INFLUENCE OF THE HYPERPARAMETER The

\sincrease in the number of epoch had a favorable

influence on all the \sdatasets on which CNN was

used, whether it was accuracy \sor other ways of

measures. 4000 epoch was the optimal \snumber of

epoch utilized for all tests.

The influence of the batch size is comparable to

that of the \sepoch. As the batch size grows, the

proportion of means \sof measurements increases,

until the ideal size is attained.

 SNNO: 2347–3657

 Volume 9,Issue2 JUNE ,2021

For CM1 the ideal batch size was 10 and was 15

for the \srest of datasets.

THE EFFECT OF THE NUMBER OF LAYERS

The use \sof �ve layers for the PC1 and KC1

dataset produced the \sbest results across the four

statistical measures: accuracy, \sDetection rate,

TNR. On the other hand, KC1 and KC2 gave \sthe

greatest outcomes when employing three layers. In

both situations with \san increasing number of

layers the Detection rate increases, \swhile limiting

the speci�city of the data decreases the accu-

\sracy. Through the findings provided above, the

number of \slayers is variable according to the

database itself. There \smay be a link between

ratios of defects has it and the \snumber of

occurrences with the optimal number of the layers.

This is what we will aim to explore and investigate

in future \sresearch.

THREAT TO VALIDITY

Multi-layer perceptrons (MLPs) and Convolutional

Neural Networks (CNNs) are two deep learning

algorithms that are examined in this study to

address the elements that might have an impact on

the accuracy of these models.

In spite of the fact that the results of the

experiments reveal how adjusting the selected

parameters has a noticeable impact on the

prediction performance, there are still dangers to

the construct validity with respect to the

generalizability of our findings.

The addressed parameter settings presented the

greatest threat to our study's internal validity since

they determined which parameters would be

influenced by our suggested method and on which

settings our comparisons would be based

 SNNO: 2347–3657

 Volume 9,Issue2 JUNE ,2021

Instrumentation of the code to which it is

addressed: the source code we used in our

experiment was written to give an advantage to the

two algorithms tested here.

We conclude by collecting a large, standard dataset

derived from actual experiments.

We may not use the most advanced or extensive

data set for testing because of concerns about

external Validity.

Further, there are likely too many other algorithms

in the literature for the addressed and implemented

algorithms to be sufficient for generalizing the

result.

The authors of this piece make the following

attempts to lessen the impact of both internal and

external dangers:

1 - Other deep learning algorithms exist in the

literature; as future work, we intend to address

additional Deep Learning algorithms and conduct

thorough comparisons in order to further reduce

this threat. In spite of this danger, we investigated

the most popular deep learning algorithms used in

previous software engineering studies to assess the

effectiveness of the factors in fault prediction [2,

[18], [32], [35], [36], etc. As a result, we think this

side of the argument poses little danger to the

construct's validity. The effects of four variables

are investigated in this work. We plan to mitigate

this risk in the future by attending to other elements

that can improve or hinder the efficacy of the

algorithms. Three, the PROMISE dataset, which

was used in this research, is a widely available

public dataset that contains information about

actual cases of software failure.

similar characteristics. However, we have

selectively used the dataset's offered information

and implemented preprocessing procedures to

extract the data that is most important to them.

Applications.

Standard performance metrics for fault prediction

(TNR, Accuracy, and the error ratio) were used to

reduce validity risks as much as possible. In the

future, though, we want to look into additional

publicly available or even commercial data sets that

also reflect a wide range of software products.

VI. CONCLUSION AND FUTURE WORK

Deep learning is a promising subset of machine

learning, and this study demonstrates how it may

be applied to provide concrete results in the field of

prediction.

in terms of forecasting in fields as diverse as

computer science, NLP, bioinformatics, software

design, etc. This article's writers set out to find the

answers to two primary research questions: can

adjusting an algorithm's parameters improve its

performance in terms of accuracy, and, among the

deep learning algorithms that have been researched,

which one yields the best SFP results? The primary

objective of this research is to discover what

aspects of deep learning systems' SFP performance

may be improved upon.

A widely-used data collection has been utilized in a

number of experiments, which have been followed

by analysis and comparisons. According to the

experiment results, measured by means of TNR,

TNR percentage, and detection rate. The CNN

algorithm produced stellar results, reaching 100%

for the KC1. Changing gears to the editing

parameters influencing, as the total number of

parameters rises, each individual parameter

contributes positively to achieving the optimum

 SNNO: 2347–3657

 Volume 9,Issue2 JUNE ,2021

outcomes. The findings indicated that the ideal

number of layers for each dataset increases with the

number of layers. To top it all off, when compared

to other activation functions, ReLU performed very

well.

In conclusion, the trials showed that improving

parameters had outstanding benefits, yielding

excellent findings, in particular when measuring

the detection rate. Our long-term goal is to

determine whether or not the data set itself plays a

significant role (domain), or if the results instead

simply depend on the algorithms' parameters, and

this will need more tests and the use of other data

sets in the near future. Since the usefulness of all

hyper parameters was not explored in this study,

we want to tackle additional issues in future

research. To that end, this research endeavors to

identify the most effective deep learning algorithms

for SFP. The correlation between the dataset's

failure ratio and the algorithm's settings is an

interesting research question for the future. The

next step, after discovering the link, is to create a

platform that use deep learning algorithms for SFP

and, maybe, other fields.

REFERENCES

[1] S. Parnerkar, A. V. Jain, and C. Birchha, ``An

approach to ef_cient software bug prediction using

regression analysis and neural networks,'' Int. J.

Innov. Res. Comput. Commun. Eng., vol. 3, no. 10,

Oct. 2015.

[2] A. V. Phan, M. L. Nguyen, and L. T. Bui,

``Convolutional neural networks over control _ow

graphs for software defect prediction,'' in Proc.

IEEE 29th Int. Conf. Tools Artif. Intell. (ICTAI),

Nov. 2017, pp. 45_52.

[3] E. Erturk and E. A. Sezer, ``Iterative software

fault prediction with a hybrid approach,'' Appl. Soft

Comput., vol. 49, pp. 1020_1033, Dec. 2016.

[4] R. Kumar and D. Gupta, ``Software Bug

Prediction System Using Neural Network,'' Eur. J.

Adv. Eng. Technol., vol. 3, no. 7, pp. 78_84, 2016.

[5] I. B. Y. Goodfellow and A. Courville, Deep

Learning, 1st ed. Cambridge, U.K.: MIT Press,

2016.

[6] S. Haykin, Networks and Learning Machines.

London, U.K.: Pearson, 2009.

[7] Y.-S. Su and C.-Y. Huang, ``Neural-network-

based approaches for software reliability estimation

using dynamic weighted combinational models,'' J.

Syst. Softw., vol. 80, no. 4, pp. 606_615, Apr. 2007.

[8] A. Pahal and R. S. Chillar, ``A hybrid approach

for software fault predic- tion using arti_cial neural

network and simpli_ed swarm optimization,''

IJARCCE, vol. 6, no. 3, pp. 601_605, Mar. 2017.

[9] Y. LeCun andY. H. Bengio And Hinton, ``Deep

learning,'' Nature, vol. 521, no. 7553, pp. 436-444,

2015.

[10] S. Yang, L. Chen, T. Yan, Y. Zhao, and Y.

Fan, ``An ensemble classi_cation algorithm for

convolutional neural network based on AdaBoost,''

in Proc. IEEE/ACIS 16th Int. Conf. Comput. Inf.

Sci., May 2017, pp. 401_406.

[11] C. Farabet, B. Martini, P. Akselrod, S. Talay,

Y. LeCun, and E. Culurciello, ``Hardware

accelerated convolutional neural networks for

synthetic vision systems,'' in Proc. IEEE Int. Symp.

Circuits Syst., May 2010, pp. pp. 257_260.

[12] C. W. S. Jin Jin and M. J. Ye, ``Arti_cial

neural network-based metric selection for software

fault-prone prediction model,'' IET Software, vol. 6,

no. 6, pp. 479_487, Dec. 2012.

[13] C. Zhang, P. Patras, and H. Haddadi, ``Deep

learning in mobile and wireless networking: A

survey,'' IEEE Commun. Surveys Tuts., vol. 21, no.

3, pp. 2224_2287, 3rd Quart., 2019.

[14] D. Kaur, A. Kaur, S. Gulati, and M. Aggarwal,

``A clustering algorithm for software fault

prediction,'' in Proc. Int. Conf. Comput. Commun.

Technol. (ICCCT), Sep. 2010, pp. 603_607.

[15] M. Park and H. Hong, ``Software fault

prediction model using clustering algorithms

determining the number of clusters automatically,''

Int. J. Softw. Eng. Appl., vol. 8, no. 7, pp. 199_204,

2014. [16] R. S. Wahono and N. S. Herman,

``Genetic feature selection for software defect

prediction,'' Adv. Sci. Lett., vol. 20, no. 1, pp.

239_244, Jan. 2014.

