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ABSTRACT  

Early software flaw detection is crucial for increasing software quality and lowering the costs, time, and effort required for software 

development. Software faults prediction (SFP) has made extensive use of machine learning (ML), and ML techniques provide a variety 

of benefits. 

results for fault prediction in software. Deep learning excels in a number of fields, including voice recognition, computer vision, and 

natural language processing. In this research, the performance of two deep learning algorithms—Multi-layer perceptrons (MLPs) and 

Convolutional Neural Networks (CNN)—is examined in order to address potential influencing variables. 

The results of the experiment demonstrate how changing certain factors directly affects the improvement that occurs; these parameters 

are changed until the right value is found for each one. Additionally, the results demonstrate that the impact of changing the parameters 

had a significant impact on prediction accuracy, which increased significantly in comparison to the conventional ML algorithm. The 

tests are run on four widely used NASA datasets to verify our presumptions. The outcome demonstrates how the parameters addressed 

may boost or lower the measurement of the fault detection rate. Up to 43.5% for PC1, 8% for KC1, 18% for KC2, and 76.5% for CM1 

showed improvement. 

INDEX TERMS 

Deep learning methods, classication, hyperparameters, and software fault prediction. 

INTRODUCTION 

The most difficult task for software developers is 

creating high-quality software. For such, software 

development needs go through a series of tasks 

under certain conditions. 

limitations to develop dependable and high-quality 

software. The presence of errors, which degrade 

software quality and render final products 

unreliable and unsatisfactory, is a significant 

disadvantage of having excellent quality and 

trustworthy software. [1] Reference The software 

development cycle must be well planned and 

controlled in order to produce high-quality 

software. 

Faults are inescapable and may appear at any stage 

of the software development process. Software 

fault prediction, which prevents learning and helps 

to decrease software failure, is one of the high-

quality models that may be used to enhance 

software fault prediction. 

It's very difficult to create software that is error-

free.Most of the time, even when a team 

meticulously follows development procedures, 

unanticipated deciencies and undiscovered bugs 

may still surface.  
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To effectively plan and manage testing and project 

maintenance, it is necessary to anticipate probable 

software flaws. The development team will have 

additional opportunities to run testing many times 

on modules or lessons with a high fault probability 

thanks to fault prediction. This will make the 

defective modules more prominent. The likelihood 

of eliminating the remaining flaws will thus rise, 

and any software products made available to end 

users will be of higher quality. 

Additionally, this strategy reduces the project's 

maintenance and support requirements. Evidently, 

software flaws may lead to low-quality software. 

Since fixing these flaws needed a lot of work, SFP 

has been used to lessen their effects. 

The SFP also decreases the expenses, amount of 

time, and effort needed to produce software 

products [3]. The expense of finding and fixing 

errors is said to be the most costly software 

development activity in reference [38]. an 

abundance of 

 For the purpose of predicting software faults, 

studies utilizing support vector machines and 

genetic algorithms have been carried out [42]. 

Affective Neural Network 

Decision tree [44], (ANN) [43], etc. There should 

be more research done. 

The following questions were addressed by Muet 

al. [45] in their discussion of various deep learning 

techniques: what are the most popular deep 

learning models and methods for optimizing them; 

do they frequently use open source frameworks; 

what are the most pressing current issues; and what 

are the suggested future solutions. By identifying 

the most relevant materials and findings, their 

systematic review helped us save time and effort. 

Deep learning algorithms were utilized in this study 

while also considering the drawbacks of the earlier 

ones. 

Deep Learning is a field of machine learning that 

employs supervised and/or unsupervised 

approaches to learn from several layers of neural 

networks. 

This has had enormous success in a variety of 

fields [34]. 

Computational models with numerous layers may 

learn representations of data at various degrees of 

abstraction thanks to deep learning [9]. It 

automatically separates the most important 

characteristics from the raw data and strengthens it 

against input fluctuations [33]. 

Deep learning can also manage enormous volumes 

of data, provide a variety of models that allow for 

the use of unlabeled data to discover relevant 

patterns, and allows for the sharing of 

representations across various tasks [13]. 

Convolutional Neural Networks (CNNs) use the 

convolution mathematical process [5]. It belongs to 

the feedforward neural network family [10]. CNNs 

are made up of combinations of stacked 

convolutional layers that have been split into 

smaller convolutional layers in order to simplify 

the computation. Each pooling layer is often 

positioned after a convolutional layer. Max pooling 

(subsampling) layers that conform one or more 

pairs. Then, as seen in Figure 1, fully-connected 

layers and the nal layer are more elegant. 
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Depending on their relative positions, neurons in 

the convolutional layer are linked to neurons in the 

next layer. 

Forward propagation is a technique used in CNN's 

training process to calculate the true classication of 

the input data. 

The trainable parameters were updated using 

current parameters and back propagation to reduce 

discrepancies between the output of the classication 

process and what was wanted. CNNs 

using the back propagation approach for training. It 

starts by randomly allocating initial weights over 

the whole network, after which the weight will 

update. 

One benefit of CNN is weight sharing, which 

lessens the requirement for calculation. 

Additionally, each stage of the nonlinear 

computation uses max pooling to decrease the 

amount of the input data, and subsampling the 

outcome reduces distortion. The number of 

connections, shared weights, and downsampling all 

decrease when the number of parameters is reduced 

[11]. Better speed, memory savings, and reduced 

computational complexity are all benefits of CNNs. 

The multilayer perceptron or feedforward deep 

network is the primary illustration of a deep 

learning model (MLPs). 

Deep Learning's accuracy and capacity to handle 

complicated applications are both constantly 

improving [5]. The fundamental deep learning 

model is the multilayer perceptron (MLP). 

Deep neural networks, which are extensions of 

artificial neural networks (ANNs) with many 

hidden layers, have gained popularity as a result of 

their astonishing performance improvements on 

challenging learning tasks and their effectiveness in 

a variety of machine learning applications. Deep 

neural networks are thus winning out over shallow 

networks. The deep neural network includes 

intricate topologies and hundreds of hyper-

parameters. Additionally, the design decision is 

crucial since finding the ideal architecture for a 

given challenge is often what separates success 

from failure. The developer recently concentrated 

on creating unique structures for brand-new issues. 

Higher complexity functions are represented when 

the number of layers and units is increased. 

Deep Learning Algorithms are used in a variety of 

studies to examine its potential for SFP. 

Failures of software may result in lost time, money, 

and other things. Software should be fault-free 

since software reliability has become the industry's 

and community's top issue. Numerous scholars 

have examined software failure prediction using a 

variety of methodologies, each of which offers a 

different level of accuracy. Deep learning  

is particularly successful in a variety of fields, 

including voice recognition, natural language 

processing, and image processing. 

the use of deep learning to the prediction of 

software faults may provide a fresh contribution to 

improving fault prediction accuracy as compared to 

current methods. 

In this investigation, the following research 

questions are addressed: 

1. Can the software defects prediction performance 

be used by deep learning? 

2. Does the model's altering architecture 

accuracy of algorithms being improved? 

3. What deep learning techniques provide the 

highest SFP performance? 

The suggested model's significance may be 

summed up as follows: 

measuring the efficiency of deep learning 

algorithms for SFP, identifying the optimal 

algorithm quality, and assessing the efficiency of 

changing the deep learning algorithms' design. The 

method will enable developers and testers to 

concentrate on the code, which will ultimately 

reduce testing and maintenance costs while also 

improving the program and boosting overall 

product dependability. 

This paper's major contribution is an investigation 

into the variables that could affect how well deep 

learning systems work in the context of SFP. In this 

study, two basic algorithms—Multi-layer 

perceptrons (MLPs) and Convolutional Neural 
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Networks—are used to carry out the tests and track 

the effects on the components (CNN). These 

elements include the number of layers, epochs, 

batch size, dropout rate, and optimizer. The result 

section includes a detailed discussion of a number 

of comparisons that were made. 

LITERATURE REVIEW 

The most significant pertinent works that addressed 

SFP are reviewed in this part, together with the 

prior findings for the state-of-the-art using ML, 

NN, and Deep Learning.  

There are several studies that show how to increase 

software quality, make better use of resources, and 

reduce or eliminate error. 

To assure comprehension of the characteristics of 

SFP, it is vital to investigate these studies. 

MACHINE LEARNING 

The effective use of ML in SFP has left more room 

for improvement in prediction accuracy, hence [12] 

proposes collaborative representation classication 

(CRC) based soft- ware defect prediction (CSDP) 

method, designed to categorize if the questioned 

software modules are defective or not. In the 

experiment, 10 datasets from NASA MDP were 

used, and the suggested method was compared 

against weighted Naive Bayes (NB), cost-sensitive 

boosting neural network (CBNN), compressed 

C4.5 decision tree (CC4.5), and coding-based 

ensemble learning methods (CEL). The outcome 

suggests  

that the suggested technique performed the best. 

 

Majority Vote based Feature Selection algorithm 

(MVFS), developed by Borandag et al. [39], was 

used to determine the most important software 

metrics. 

They tested the effectiveness of MVFS using 

combinations of machine methods and lter 

(Information Gain, Symmetrical Uncertainty 

ReliefF feature, Correlation- based approach). They 

employed PC1, CM1, KC1, and JM1. The findings 

demonstrate that the MVFS technique may improve 

defect prediction performance by identifying the 

most crucial software metrics. In order to improve 

prediction accuracy and shorten processing time, 

Reference [40] suggested model incorporates a 

modified under-sampling approach and a 

correlation feature selection with ensemble 

learning. The model has been applied to 10 open 

source datasets. The results of the studies 

demonstrated that the suggested model performed 

flawlessly throughout the prediction process; the 

improvements in terms of F1 measure went up to 

96%. 

The following methods forecast the error for the 

unsupervised data using a clustering model. They 

propose and assess novel methods, such as K-

Sorensen-means clustering, a new SFP clustering 

technique for K-means that calculates cluster 

distance using the Sorensen metric. Three 

datasets—JM1, PC1, and CM1—are included in 

the suggested methodology. 

The findings demonstrate that K-Sorensen 

clustering outperforms K-Canberra means [14]. 

Few studies have used clustering for SFP because it 

is difficult to determine the number of clusters. To 

solve this problem, expectation-maximization (EM) 

and the Xmeans model proposed by [15] were used 

to predict errors when training data were absent. 

The experiment used data from the AR3, AR4, and 

AR5 PROMISE repository. The results of the 

investigation demonstrate that the Xmeans model 

outperforms the EM and another model from 

earlier studies. 

Furthermore, accuracy increases and reaches 

90.48% when data are used without feature 

selection. Wahono and Herman [16] proposed a 

strategy that merged the bagging method to address 

the class imbalance issue with the genetic approach 

to address feature selection. This model is used on 
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nine NASA datasets, comparing the results from 

SVM, DT, NN, and statistical classifiers. The best 

prediction performance was achieved by SVM, 

which achieved 89.9%. In contrast to filter-based 

feature ranking strategies like information gain and 

gain, Wang et al. [17] provide examples of feature 

ranking methodology. 

 

NB, multilayer perceptron, KNN, SVM, and 

logistic regression are used in the models' 

construction. The PROMISE data repository 

provides three datasets. Findings indicate that the 

The performance of ensemble technique is superior 

to that of any other individual ranker. 

NEURAL NETWORK APPROACH 

Neural networks typically include three parts. First 

are neurons. Simple computing cells are used. Each 

neuron has the ability to take in impulses, analyze 

them, and finally act. 

 

create a signal output. To attain high performance, 

neural networks need extensive connections 

between one another. 

Figure 2 depicts a model of a neuron with a series 

of connecting connections, each of which contains 

an adder for summing the input and an activation 

function in addition to a weight. 

The design of the network is the second element. 

The feed-forward network, which consists of an 

input layer, a hidden layer, and an output layer, is 

the most popular form of neural network design. In 

a feed-forward network, data flows from input 

nodes to hidden layers and output nodes, as 

illustrated in Figure 3, from left to right in the 

neural network. The third is a learning algorithm, 

which is a term used to describe a procedure that 

modifies the weights of the network to lessen 

output error. 

The back propagation algorithm is used to 

repeatedly train the weights as the mistakes are sent 

back from the output layer [6], [7]. A neural 

network's massively parallel distributed topology 

and capacity for learning provide it with its 

computational power. 

These talents enable it to find effective answers to 

challenging issues. [7] Reference In comparison to 

the human brain, neural networks can accomplish 

difficult tasks and demonstrate their superiority in 

problem solving. This was clear in a number of 

fields, including classical analysis, pattern 

recognition, and voice recognition. NN is a popular 

supervised learning approach [8] (reference [4]). In 

reference [4], a neural network model was created 

to evaluate performance using the accuracy-

oriented mean squared error function. Gradient 

descent was used in the model's development. 

Three components commonly make up neural 

networks. Neurons are the first. The usage of basic 

computing cells. Every neuron has the capacity to 

receive impulses, process them, and then 

act.Output a signal, please. Neural networks need a 

lot of connections between them in order to operate 

well. 

In Figure 2, a model of a neuron is shown with a 

network of connections, each of which has a 

weight, an adder for summing the input, and an 

activation function. 

The second component is how the network is 

designed. The most common kind of neural 

network architecture is the feed-forward network, 

which has three layers: an input layer, a hidden 

layer, and an output layer. Data travels from input 

nodes to hidden layers and output nodes in a feed-

forward network, as shown in Figure 3, from left to 

right in the neural network. The third is a learning 

algorithm, which is the name given to a process 

that adjusts the network's weights to reduce output 

error. 
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As errors are conveyed back from the output layer, 

the back propagation technique is utilized to 

continually train the weights [6], [7]. The 

computing strength of a neural network comes 

from its massively parallel distributed architecture 

and learning capability. 

It is able to solve complex problems because to 

these skills. Reference: [7] Neural networks can 

complete challenging tasks and show why they are 

better at solving problems than the human brain. 

This was evident in a variety of domains, including 

speech recognition, pattern recognition, and 

classical analysis. NN is a well-liked supervised 

learning technique [8]. (reference [4]). A neural 

network model was developed to assess 

performance using the accuracy-oriented mean 

squared error function in reference [4]. The model 

was created using gradient descent. 

 

The method is divided into four parts, beginning 

with the extraction of tokens from numerically 

encoded vectors using Abstract Syntax Trees 

(ASTs). Then it uses CNN. 

 

and incorporates it with conventional defect 

prediction tools. 

In order to determine if the code les are 

experiencing bugs or not, it employs the Logistic 

Regression. The trials, which were conducted 

across seven open source projects, demonstrate a 

12% average improvement of the state-of-the-art 

approach by the DP-CNN. A prediction model 

capable of autonomously learning characteristics 

for describing source code that has been utilized for 

defect prediction is created by Dam et al. [19]. 

They use an LSTM that is immediately compatible 

with the Abstract Syntax Tree representation of 

source code, which is tree-structured (ASTs). To 

better reflect the syntactic structure and depth of 

semantics in source code, the model is constructed 

as a tree-structured network of LSTM units. The 

model's function results from training are used to 

automatically determine if new hires are faulty, 

whether they are working on the same project or a 

different one. Additionally, it is able to identify the 

components in a source code that almost certainly 

lead to a flaw. This helps in comprehending and 

recognizing precisely what the model is taking into 

account, as well as to what extent it has certain 

flaws. 

Their methods consist of four main stages: I 

parsing a source code file into an Abstract Syntax 

Tree; (ii) embedding AST nodes, which map the 

label names of each AST node into a continuous-

valued vector of x length; (iii) feeding the AST 

embeddings into a tree-based network of LSTMs to 

obtain a vector representation for the entire AST; 

and (iv) using a classifier like Logistic Re 

They conducted an analysis of the Samsung 

dataset, which includes datasets from the 

PROMISE repository and open-source initiatives. 

The outcome of this methodology proves that it can 

be used in actual practice. 

The performance of the models is impacted by 

existing features and tree structures that sometimes 

fall short of capturing the semantics of programs. 

Previous research have focused on extracting 

features using tree representations of programs. 

[2] suggested a technique to automatically learn 

fault characteristics in order to thoroughly explore 

the semantics of programs. They used CNNs based 

on directed graphs (DGCNNs) to learn semantic 

characteristics. The crucial process for the concept 

is creating Control Flow Graphs (CFGs) using 

Linux's gCC and assembly code. 

to get a program's graph representation. CFG is 

designed to explain how assembly instructions are 

executed and reveal how the program behaves. The 

To create models based on CFG data, another step 

is to apply a graphical model to CFG datasets that 

comprise multi-view multi-layer CNNs for directed 

labeled graphs. 
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In the first stage, a vertex is represented as a 

collection of real-valued vectors according to the 

number of views. Apply two convolution layers, 

then a dynamic pooling layer, and then compile all 

of the extracted features from the graphs into a 

vector. The last stage involves sending a feature 

vector to an output layer and a fully-connected 

layer to calculate the category distributions for 

potential outcomes, as shown in Figure 4. 

Four datasets (SUMTRIAN, FLOW016, MNMX, 

and SUBINC) were collected from the CodeChef 

website and used in the experiments. They used a 

number of machine learning methods to create NN, 

SVM, and KNN prediction models. In comparison 

to the feature-based strategy (increase from 4.08% 

to 15.49%) and the tree-based technique 

(improvement from 1.20% to 12.39%), this 

approach performs the best. 

citation [41] For defect prediction, they coupled the 

Long Short- Term Memory (LSTM) algorithm with 

word embedding. The first step in the suggested 

model's three-step structure pulls a token from its 

abstract syntax tree. 

Second, a vector is created from the token. Third, 

create a long short-term memory using the vector 

and its labels. 

The LSTM algorithms identify defects by 

automatically picking up on program semantic 

data. The studies conducted on eight open-source 

projects demonstrate that the suggested model 

works better than cutting-edge fault prediction 

techniques. Utilizing deep learning algorithms for 

prediction yields encouraging results; some 

recently published research employed CNN and 

MLP without addressing the efficacy of altering the 

key variables that may directly affect the 

performance of prediction [46, [47]. 

PART III: RESEARCH METHODS 

We began reviewing the fundamental design 

processes in this part, which called for employing 

MLPs and CNN to anticipate software defects 

using NASA datasets. stages in the approach, 

 

As a first step, we chose four datasets with different 

defect rates, normalized them for these datasets, 

and then continued. When first applied, the MLP 

modifies its settings. 

Finally, we compared the outcomes to identify the 

best outcomes obtained and followed the same 

procedures for CNN. The Python 3.6 language is 

used to build the MLP and CNN algorithms. 

To carry out the studies, a variety of libraries 

(including Keras, Numpy, Panda, Sklearn, and 

Matplotlib) were used. The following subsections 

go into deeper depth about each step after that. 

Figures 5 and 6, respectively, provide an overview 

of our suggested technique and the pseudocode. 

SELECT DATASET, first. 

The datasets are taken from the NASA Metrics 

Data Program (MDP), and they comprise data from 

software measurements and related error 

information gathered. In order to promote 

repeatable, verifiable, debatable, and/or improved 
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prediction models of software engineering, NASA 

MDP dataset is made accessible to the general 

public. 

 

 

B. REGULATION 

When a numerical attribute may find new ranges 

from an existing range using an equation, 

normalization is applied. 

It is carried out during the preprocessing stage and 

is helpful for distance measurements and 

classication algorithms like NN (KNN, clustering). 

This research used the standardization approach to 

maintain the natural distribution of the qualities. To 

change characteristics with a Gaussian Distribution 

and various means and distributions, 

standardization is an effective strategy. We use a 

Standard Scaler from the scikit-learn module in 

Python. The Standardization formula is shown in 

equation (1) below. 

 

C. USING DEEP LEARNING METHODS 

During this stage, we used two algorithms (MLPs 

and CNN) to examine how well they might 

improve the accuracy of SFP and identified the 

performance-influencing factor. 

Choosing the various layers, functions, and 

hyperparameters for each experiment will be done 

in this stage. 

Once we are satisfied with the outcome, we repeat 

the procedure. 

Modifying the model parameters. 

The network's parameters must take into account 

the hyper-parameter activation function and the 

number of layers in each layer. 

1) HIERARCHIVE PARAMETERS 

For each test scenario, a different hyper-parameter 

will be changed to see how it affects accuracy. To 

choose the proper parameters and get the intended 

outcomes, tuning the hyper-parameter is essential. 

Although there are no specific guidelines for 

selecting the ideal parameters, the decision often 

depends on the nature and scope of the training 

dataset. Selecting the appropriate parameters is 

crucial, but it is a challenging aspect of network 

training. Hyper-parameter tuning, however, 

typically relies more on practical expertise than on 

theoretical understanding. Due to limitations like 



                                               SNNO:   2347–3657                                                                                                                                 

                                        Volume 9,Issue2 JUNE ,2021                                                                                                                                       

memory limits, trade-offs are an inherent part of 

parameter selection [22]. 

Before documenting the findings of our research's 

many tests, we examined and assessed the hyper-

parameter values for each method. When one of 

these hyperparameters has been optimized, work on 

additional hyperparameters to get the optimum 

outcome. Compare the settings that help algorithms 

perform better after that. 

Remove any values that have a negative impact on 

the algorithms' outcomes as well. Compare the 

settings that help algorithms perform better after 

that. 

Remove any values that have a negative impact on 

the algorithms' outcomes as well. 

Below is a list of the hyper-parameters settings: 

Epoch count: An epoch is the total number of times 

the data set has been traversed [22]. To find the 

optimal number of epochs for the network to 

properly converge, we will vary the number of 

epochs in our experiment from 10 to 20000. The 

amount of training samples makes up the batch 

size. The number of predictions that may be 

produced at once is controlled by batch size, along 

with the model. The increased batch size often 

requires more RAM. citation [23] Contrarily, 

small-batch sizes are preferred since they lead to 

convergence in a condensed number of epochs 

[24]. 

Test batches will range in size from 1 to 20. 

Dropout rate: Dropout is a strategy for mixing 

exponentially many distinct neural network 

topologies effectively while also preventing over-

tetting. The falling of troops happens at random 

[31]. As seen in Figure 7, dropping out units in a 

neural network means temporarily eliminating each 

unit together with all of its incoming and outgoing 

connections. 

In addition to being used to graphical models like 

Boltzmann Machines, the dropout is utilized to feed 

forward neural networks [32]. Increments of 0.1 

will be used to test various dropout rates between 

0.2 and 0.6. Updated weights are applied at the 

back propagation step to decrease error using the 

optimizer function. 

Adam (adaptive moments) and Adagrad (adaptive 

gradient) are the two optimization functions we'll 

be using [5]. 

 

2) THE NUMBER OF LAYERS 

The performance of the networks may be strongly 

influenced by a variety of factors, including the 

presence of hidden layers and neurons in those 

levels. The quantity of layers increases. 

3) ACTIVATION FUNCTION 

An artificial neuron's activation function 

determines its output based on an input or 

combination of inputs. 

Each activation function executes an after receiving 

one x input unique mathematical analysis on it. 

Deep neural networks frequently use the activation 

functions sine, rectilinear unit, and hyperbolic 

tangent. Sigmoid: a popular back propagation NN 

metric. The range only extends over (0, 1). It is a 

suitable extension of nonlinearity that restricts 

earlier uses in NN and also exhibits a suitable level 

of smoothness [26]. The following formula (2) 

disallows the Sigmoid function: 

 

The ratio of the hyperbolic sine and cosine 

functions is known as the hyperbolic tangent 

(Tanh) [27]. The formula (3) denies the Tanh 

function as follows: 
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Rectified linear units (ReLUs) are extensively 

utilized to train a deeper network than Sigmoid by 

acting as an activation function for the hidden 

layers in a Deep Neural Network. 

Tanh's activation processes. ReLU enables Deep 

Neural Networks (DNN) to learn from complex, 

high-dimensional data more quickly and 

effectively. The main benefit of ReLU is that it 

only requires comparison and multiplication, not an 

expensive computation. ReLU is a particularly 

good option for DNN because it provides an 

efficient backpropagation without exploding or 

disappearing gradient [28]. 

Swish: is a smooth, non-monotonic function with 

no upper or lower bounds and similarly or very 

similar results. 

performs better than ReLU on the deep neural 

network across a range of difficult datasets. As f (x) 

D x Sigmoid(x), Swish dened [29]. 

E. COMPARISON 

To evaluate the impact of changing the investigated 

parameters (hyperparameter, number of layers and 

neurons, activation function), a comparison will be 

performed. 

function). 

F. DATA ANALYSIS & INTERPRETATION 

This research evaluates the performance of several 

deep learning algorithms for classification. Use, 

Detection Rate, and TNR, which are calculated by 

taking into making both optimistic and pessimistic 

predictions about things. The following formulae 

may be used to calculate the performance 

indicators: 

The sensitivity or detection rate measures how well 

positive instances were recognized. Specify the 

frequency with which the fault will be positive if 

the class has a fault. (The percentage of genuine 

positive results) 

D TP/ D = Detection Percentage (TPCFN). The 

accuracy of a forecast is the degree to which the 

prediction corresponds to reality, expressed as a 

percentage. Accuracy 

 

G. HARDWARE SPECIFICATION 

It was determined that two computers would be 

sufficient for testing the implementation, and those 

machines were utilized throughout the development 

process. The first, a laptop computer, was mostly 

used for preparing for and presenting quick and 

painless diagnostics The second was a virtual 

computer borrowed from the Computer Center, and 

it was utilized mostly for long-term testing. 

 

H. SOFTWARE SPECIFICATIONS 

The Ubuntu 18.04.1 LTS version of Linux was 

installed on the virtual computer. The majority of 

its applications 
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in order to give the most objective testing possible, 

testing is performed without providing any extra 

services to the client. Ubuntu 18.04.1 LTS was 

used as the OS on the laptop. 

IV. RESULT 

Both the MLPs and the CNN are written in Python 

3.6.5, with Keras Frameworks used for 

implementation. Moreover, the Numpy, Panda, and 

Sklearn libraries were employed. An array of visual 

tools is used for the development environment was 

based around the Matplotlib library and Spyder. 

Nothing in this work has been developed in 

isolation from the other. We conducted over two 

hundred tests varying the (hyper-parameter), 

(activation function), and (layer count) of the 

system. Modifying the parameters of the model to 

achieve better results is the subject of the 

experiments. The obtained results are presented in 

the following subsections. 

MLPS RESULT 

The MLPS Outcome A. 

The impact of (epochs, batches, dropout rate, 

Optimizer, layers, and activation function) is 

addressed by the 

tables 3–8 detail the outcomes that the suggested 

method, using MLPs algorithms, was able to attain. 

As shown in table 3, we conducted an experiment 

using MLPs to investigate the impact of the epoch 

number. According to table 4, we carried out the 

following tests to investigate the impact of batch 

size. 

PREVALENCE OF ATTRIBUTION The 

experiments listed in table 5 were conducted to 

analyze the impact of the attrition rate. 

OPTIMIZER The following tests were conducted 

to evaluate the impact of Optimizer and are detailed 

in table 6. Adgrad provided more reliable detection 

and accuracy rates. 

 

 

COUNT OF SHEETS Table 7 details the trials we 

ran to determine the impact of varying layer counts. 
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PURPOSE OF ACTIVATION As shown in table 8, 

we conducted the experiments below to investigate 

the impact of activation function. 

CNN RESULT 

The suggested method used MLPs techniques to 

produce the following outcomes by adjusting the 

parameters (number of epochs, batch size, number 

of layers, activation function). Tables 9, 10, and 11 

provide details. 

EPISODE COUNT We ran the experiment on 

CNN shown in table 9 to analyze the impact of 

epoch number. 

SIZE OF EACH BATCH See table 10 for details of 

an experiment we ran on CNN to measure the 

impact of different batch sizes. 

COUNT OF SHEETS The experiment we ran on 

CNN is detailed in table 11, and it was designed to 

assess the impact of a variety of layer 

configurations. 

C. COMPARE AND CONTRAST 

PERFORMANCE COMPARISONS Metrics 

The top outcomes from both algorithms are shown 

in Table 12. In this case, the findings favor CNN 

significantly. 

Time and experiment count comparisons 

Differences in the time and number of experiments 

required to obtain the success with both algorithms 

that is satisfactory. 

Summary results for experiments with MLPs and 

CNNs showing improvements as parameters were 

adjusted based on detection rate are shown in 

Tables 14 and 15. 

V. DISCUSSION 

We analyze the proper settings of the CNN and 

MLPs algorithms that provide us relevant 

predictions in order to discuss and comprehend the 

findings. 

MLPS 

Based on experimental results on MLPs algorithm, 

the pro- posed approach obtained the effective, 

which achieved by modifying the network 

parameters as follows: 

THE EFFECT OF THE HYPERPARAMETER 

The num- 

ber of epoch had a signi_cant effect, especially in 

increasing the Detection rate. When we increase 

epoch number then all of the following are 

increased: the Detection rate, the accu- racy and the 

model ability to predict faults. For example, when 

applying to the PC1 dataset and increasing the 

number of the epoch from 1000 to 10000, the 

Detection rate ratio increases from .012 to .363 and 

accuracy from 92 to 93.5. 

However, after reaching the optimal number of the 

epoch, 
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the ratio of the TNR drops and, there is a 

consequent \sdecrease in the accuracy. For 

example, when applying to\sthe KC1 dataset and 

increasing the number of the epoch from the ideal 

number (15000) to 25000, the percent- \sage of 

TNR declines from .931 to.894 and the accuracy 

\sof .854 to .849. The influence of the batch size is 

comparable to \sthat of the epoch. As the batch size 

grows, the accuracy \simproves, until it reaches the 

ideal size. After then, any \sincrease in the batch 

size leads in a drop in accuracy. 

For example, when the batch is adjusted from 5 to 

7 and then \sto 10, the accuracy and TNR vary as 

follows: accuracy \s(.891- .899-.891), TNR (.968-

.975-.957). (.968-.975-.957). The findings showed 

\sthat the best dropout rate was when using the 

value (.5) except \sPC1 where it was (.2). (.2). This 

may be due to a tiny percentage \sof errors that PC1 

possesses. Also, the Agrad optimizer is superior 

than \sAdam. 

THE EFFECT OF THE NUMBER OF LAYERS 

The use \sof �ve layers for the PC1 and KC1 

dataset produced the best \sresult, in terms of 

accuracy, Detection rate, TNR. On the other 

\shand, KC1 and KC2 delivered the greatest 

outcomes when employing three \slayers. In both 

situations with a larger number of layers, \sthe 

Detection rate is enhanced while diminishing the 

TNR of the \sdata that affects the accuracy. 

Through the findings mentioned \sabove, the 

number of layers is variable according to the 

\sdatabase itself. There may be a link between 

ratios \sof defects and the number of cases with the 

optimal number \sof the layers. This is what we 

will aim to explore and investigate \sin future 

studies. 

 

 

THE EFFECT OF THE ACTIVATION 

FUNCTION by \scomparing the outcomes in which 

several activation functions\swere utilized, the 

ReLU exhibited better results over other activation 

functions. 

B. CNN ALGORITHM 

Based on our research and the data we acquired 

from \sthese trials, there was an influence caused 

by modifying \sthe network design. This impact 

was as follows: 

INFLUENCE OF THE HYPERPARAMETER The 

\sincrease in the number of epoch had a favorable 

influence on all the \sdatasets on which CNN was 

used, whether it was accuracy \sor other ways of 

measures. 4000 epoch was the optimal \snumber of 

epoch utilized for all tests. 

The influence of the batch size is comparable to 

that of the \sepoch. As the batch size grows, the 

proportion of means \sof measurements increases, 

until the ideal size is attained. 
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For CM1 the ideal batch size was 10 and was 15 

for the \srest of datasets. 

THE EFFECT OF THE NUMBER OF LAYERS 

The use \sof �ve layers for the PC1 and KC1 

dataset produced the \sbest results across the four 

statistical measures: accuracy, \sDetection rate, 

TNR. On the other hand, KC1 and KC2 gave \sthe 

greatest outcomes when employing three layers. In 

both situations with \san increasing number of 

layers the Detection rate increases, \swhile limiting 

the speci�city of the data decreases the accu- 

\sracy. Through the findings provided above, the 

number of \slayers is variable according to the 

database itself. There \smay be a link between 

ratios of defects has it and the \snumber of 

occurrences with the optimal number of the layers. 

This is what we will aim to explore and investigate 

in future \sresearch. 

 

 

 

THREAT TO VALIDITY 

Multi-layer perceptrons (MLPs) and Convolutional 

Neural Networks (CNNs) are two deep learning 

algorithms that are examined in this study to 

address the elements that might have an impact on 

the accuracy of these models. 

In spite of the fact that the results of the 

experiments reveal how adjusting the selected 

parameters has a noticeable impact on the 

prediction performance, there are still dangers to 

the construct validity with respect to the 

generalizability of our findings. 

The addressed parameter settings presented the 

greatest threat to our study's internal validity since 

they determined which parameters would be 

influenced by our suggested method and on which 

settings our comparisons would be based 
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Instrumentation of the code to which it is     

addressed: the source code we used in our 

experiment was written to give an advantage to the 

two algorithms tested here. 

We conclude by collecting a large, standard dataset 

derived from actual experiments. 

We may not use the most advanced or extensive 

data set for testing because of concerns about 

external Validity. 

Further, there are likely too many other algorithms 

in the literature for the addressed and implemented 

algorithms to be sufficient for generalizing the 

result. 

The authors of this piece make the following 

attempts to lessen the impact of both internal and 

external dangers: 

1 - Other deep learning algorithms exist in the 

literature; as future work, we intend to address 

additional Deep Learning algorithms and conduct 

thorough comparisons in order to further reduce 

this threat. In spite of this danger, we investigated 

the most popular deep learning algorithms used in 

previous software engineering studies to assess the 

effectiveness of the factors in fault prediction [2, 

[18], [32], [35], [36], etc. As a result, we think this 

side of the argument poses little danger to the 

construct's validity. The effects of four variables 

are investigated in this work. We plan to mitigate 

this risk in the future by attending to other elements 

that can improve or hinder the efficacy of the 

algorithms. Three, the PROMISE dataset, which 

was used in this research, is a widely available 

public dataset that contains information about 

actual cases of software failure. 

similar characteristics. However, we have 

selectively used the dataset's offered information 

and implemented preprocessing procedures to 

extract the data that is most important to them. 

Applications. 

Standard performance metrics for fault prediction 

(TNR, Accuracy, and the error ratio) were used to 

reduce validity risks as much as possible. In the 

future, though, we want to look into additional 

publicly available or even commercial data sets that 

also reflect a wide range of software products. 

VI. CONCLUSION AND FUTURE WORK 

Deep learning is a promising subset of machine 

learning, and this study demonstrates how it may 

be applied to provide concrete results in the field of 

prediction. 

in terms of forecasting in fields as diverse as 

computer science, NLP, bioinformatics, software 

design, etc. This article's writers set out to find the 

answers to two primary research questions: can 

adjusting an algorithm's parameters improve its 

performance in terms of accuracy, and, among the 

deep learning algorithms that have been researched, 

which one yields the best SFP results? The primary 

objective of this research is to discover what 

aspects of deep learning systems' SFP performance 

may be improved upon. 

A widely-used data collection has been utilized in a 

number of experiments, which have been followed 

by analysis and comparisons. According to the 

experiment results, measured by means of TNR, 

TNR percentage, and detection rate. The CNN 

algorithm produced stellar results, reaching 100% 

for the KC1. Changing gears to the editing 

parameters influencing, as the total number of 

parameters rises, each individual parameter 

contributes positively to achieving the optimum 
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outcomes. The findings indicated that the ideal 

number of layers for each dataset increases with the 

number of layers. To top it all off, when compared 

to other activation functions, ReLU performed very 

well. 

In conclusion, the trials showed that improving 

parameters had outstanding benefits, yielding 

excellent findings, in particular when measuring 

the detection rate. Our long-term goal is to 

determine whether or not the data set itself plays a 

significant role (domain), or if the results instead 

simply depend on the algorithms' parameters, and 

this will need more tests and the use of other data 

sets in the near future. Since the usefulness of all 

hyper parameters was not explored in this study, 

we want to tackle additional issues in future 

research. To that end, this research endeavors to 

identify the most effective deep learning algorithms 

for SFP. The correlation between the dataset's 

failure ratio and the algorithm's settings is an 

interesting research question for the future. The 

next step, after discovering the link, is to create a 

platform that use deep learning algorithms for SFP 

and, maybe, other fields. 
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