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Abstract: This study provides an in-depth analysis of liver fibrosis classification using heterogeneous ultrasound 

image datasets. Utilizing advancements in deep learning, we evaluate the efficacy of various convolutional neural 

network (CNN) architectures, including VGGNet, ResNet, DenseNet, EfficientNet, Vision Transformer (ViT), 

and Xception. Building on the base paper’s findings, where ResNet achieved an accuracy of 87.92%, our 

investigation extends to Xception and ensemble models. Through rigorous experimentation, our results 

demonstrate significant improvements in classification accuracy. Notably, the Xception model and ensemble 

approaches surpass the 90% accuracy threshold, showcasing their potential in enhancing diagnostic performance. 

This underscores the effectiveness of leveraging diverse CNN architectures and ensemble strategies for liver 

fibrosis classification from heterogeneous ultrasound images. Our study offers valuable insights for medical image 

analysis and highlights the importance of exploring multiple deep learning techniques to improve diagnostic 

accuracy in clinical settings. 

Index Terms: Domain bias, multi-domain learning, ultrasonography, liver fibrosis. 

1. INTRODUCTION 

Ultrasound (US) images are widely utilized in the 

medical field due to their non-invasive nature and 

the absence of harmful radiation. These images are 

particularly prevalent in abdominal radiology for 

the continuous monitoring of patients with liver 

cirrhosis or chronic hepatitis. US imaging plays a 

crucial role in detecting hepatocellular carcinoma 

and assessing the degree of liver fibrosis [1]. The 

process involves capturing images using the 

reflected waves of a sound wave pulse [2]. Unlike 

superficial organs such as the breasts and thyroid 

gland, the liver is situated deep within the human 

body. This deep location poses significant 

challenges during signal transmission and 

reception. The signals often weaken as they 

encounter various obstacles within the body, 

increasing the likelihood of noise interference. 

Consequently, diagnosis using US imaging can be 

highly dependent on the expertise of the clinician. 

To achieve more objective diagnoses, research has 

increasingly focused on leveraging deep 

convolutional neural networks (DCNNs) for US 

imaging. DCNNs, which are primarily used in 

imaging applications, have demonstrated 

exceptional performance in tasks such as image 

segmentation and classification. The use of DCNNs 

in US imaging aims to eliminate individual 

variability in disease diagnosis, providing 

performance that is comparable to that of 
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experienced radiologists. Traditional automated 

classification models, however, have been trained 

and evaluated using images from specific types of 

US imaging machines. Each machine generates 

images with unique noise characteristics, and a 

model trained on images from a single device tends 

to be biased toward those specific characteristics. 

This means that the model may only perform well 

on images acquired from the same type of machine 

used for training, limiting its generalizability [3]. 

This issue is particularly problematic because the 

vast majority of US imaging studies do not account 

for the diversity of imaging devices. Many studies 

utilize images from a single machine or fail to 

consider the differences between machines. This 

can result in models that perform poorly on images 

from less commonly used devices [4], [5], [6]. Such 

models may not be reliable when applied to US 

images obtained from new or different devices, 

making it challenging to ensure consistent 

diagnostic performance across various clinical 

settings. Therefore, it is essential to develop and 

analyze DCNN models using multi-domain data to 

achieve a more generalized automatic diagnosis. 

By incorporating images from multiple types of US 

imaging machines, we can train models that are less 

biased and more robust to the variations in image 

quality and noise introduced by different devices. 

This approach can help create more versatile and 

reliable diagnostic tools that maintain high 

performance regardless of the imaging equipment 

used. The goal is to enhance the generalizability of 

DCNN-based models in US imaging, ensuring that 

they can accurately diagnose liver fibrosis and other 

conditions even when applied to images from 

diverse sources. This not only improves the 

reliability of automated diagnostic systems but also 

broadens their applicability in clinical practice, 

potentially leading to better patient outcomes 

through more consistent and accurate diagnoses. 

In summary, while US imaging is invaluable for 

monitoring and diagnosing liver conditions, its 

effectiveness can be hindered by the variability 

introduced by different imaging devices. The use of 

DCNNs offers a promising solution by providing 

objective and consistent diagnostic capabilities. 

However, to fully realize this potential, it is crucial 

to train and evaluate these models on multi-domain 

data, ensuring they are robust to the variations 

across different US imaging machines. This 

approach aims to improve the generalizability and 

reliability of automated US image analysis, 

ultimately enhancing its utility in medical 

diagnostics. 

2. LITERATURE SURVEY 

The field of liver fibrosis assessment using 

ultrasound (US) imaging has evolved significantly, 

primarily due to advancements in imaging 

technologies and the application of deep learning 

algorithms. Ultrasound elastography, a technique 

highlighted by Tang et al., has been instrumental in 

non-invasively evaluating liver fibrosis [1]. This 

method relies on the mechanical properties of 

tissues to detect variations that may indicate 

fibrosis. MR elastography, another technique 

discussed alongside ultrasound elastography, 

complements these findings by offering high-

resolution images, albeit with higher costs and less 

accessibility compared to US imaging [1]. 

US images are generated through the reflection of 

sound waves, and their quality can be influenced by 

several factors, including the depth of the organ 

being examined. Jung and Choi discussed 

techniques to optimize these images using active 

echo signals and software filter corrections, which 
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are essential for reducing noise and enhancing 

image clarity [2]. These optimizations are crucial, 

especially for the liver, which is located deep within 

the body and poses significant challenges during 

imaging due to signal weakening and increased 

noise. 

The application of deep convolutional neural 

networks (DCNNs) in medical imaging, 

particularly for liver fibrosis classification, has 

garnered substantial attention. DCNNs have shown 

remarkable success in various imaging tasks, such 

as image segmentation and classification, due to 

their ability to learn complex patterns from large 

datasets. Liu provides a comprehensive review of 

the role of deep learning in medical ultrasound 

analysis, underscoring its potential to provide 

objective and consistent diagnoses [8]. This is 

particularly important in ultrasound imaging, where 

the diagnostic accuracy can be highly dependent on 

the operator's expertise. 

One of the critical challenges in applying DCNNs 

to ultrasound imaging is the variability in images 

produced by different ultrasound machines. Each 

machine has unique noise characteristics, and 

models trained on images from a single device may 

not generalize well to images from other devices. 

Blaivas et al. highlighted the impact of novel 

ultrasound equipment on algorithm performance, 

emphasizing the need for domain adaptation to 

ensure models remain effective across different 

machines [4]. This variability can hinder the 

generalizability of DCNN models, making it 

difficult to achieve consistent diagnostic 

performance in clinical settings. 

Several studies have attempted to address this 

challenge by incorporating multi-domain data into 

their training processes. For instance, Moon et al. 

utilized ensemble learning from multiple 

convolutional neural networks to improve the 

accuracy of breast ultrasound image classification, 

demonstrating the benefits of leveraging diverse 

data sources [5]. Similarly, Cao et al. explored 

various deep learning architectures for breast lesion 

detection and classification, reinforcing the 

importance of using comprehensive datasets to 

enhance model robustness [6]. These studies 

illustrate the potential of multi-domain data in 

developing more generalized and reliable 

diagnostic models. 

In the context of liver fibrosis classification, Dan et 

al. employed transfer learning and a fully connected 

network (FCNet) to analyze ultrasound images, 

achieving notable improvements in classification 

accuracy [7]. Transfer learning, which involves pre-

training a model on a large dataset and then fine-

tuning it on a smaller, domain-specific dataset, can 

significantly enhance model performance, 

particularly when dealing with limited medical 

imaging data. This approach leverages the 

knowledge gained from the pre-training phase to 

better understand the target domain, thereby 

improving the model's ability to generalize to new 

data. 

Another study by Reddy et al. proposed a novel 

computer-aided diagnosis framework using deep 

learning for the classification of fatty liver disease 

in ultrasound imaging [9]. Their framework 

demonstrated the potential of DCNNs to achieve 

high diagnostic accuracy, further supporting the 

case for deep learning in liver disease assessment. 

The use of advanced DCNN architectures, such as 

ResNet, DenseNet, and Xception, has shown 

promise in various studies, with each architecture 

offering unique advantages in terms of depth, 

connectivity, and feature extraction capabilities. 
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The effectiveness of these models is further 

enhanced by ensemble learning techniques, which 

combine predictions from multiple models to 

produce a more accurate and robust outcome. 

Ensemble models have been particularly successful 

in improving diagnostic performance by mitigating 

the weaknesses of individual models and leveraging 

their collective strengths. For instance, an ensemble 

approach combining models trained on different 

subsets of multi-domain data can provide a more 

comprehensive understanding of the underlying 

patterns in ultrasound images, leading to better 

classification results. 

Despite these advancements, there are still several 

challenges and areas for improvement in the field of 

ultrasound image analysis using DCNNs. One of 

the primary challenges is the need for large, 

annotated datasets that encompass a wide range of 

imaging devices and conditions. The availability of 

such datasets is crucial for training robust models 

that can generalize well to diverse clinical 

scenarios. Additionally, the development of 

standardized evaluation protocols and metrics is 

essential for comparing the performance of 

different models and ensuring their reliability in 

real-world applications. 

Furthermore, the integration of DCNN-based 

diagnostic tools into clinical workflows requires 

careful consideration of their interpretability and 

usability. Clinicians must be able to understand and 

trust the predictions made by these models, which 

necessitates the development of explainable AI 

techniques that provide insights into the decision-

making process of DCNNs. Such techniques can 

help bridge the gap between complex deep learning 

models and clinical practice, facilitating the 

adoption of AI-driven diagnostic tools in 

healthcare. 

In conclusion, the application of deep learning, 

particularly DCNNs, to liver fibrosis classification 

from ultrasound images holds significant promise. 

By leveraging advancements in image optimization, 

multi-domain data integration, and ensemble 

learning, researchers can develop more accurate and 

reliable diagnostic models. However, addressing 

the challenges of data availability, standardization, 

and interpretability is crucial for realizing the full 

potential of these technologies in clinical settings. 

As the field continues to evolve, ongoing research 

and collaboration between technologists and 

clinicians will be essential for translating these 

innovations into improved patient care and 

outcomes. 

3. METHODOLOGY 

a) Proposed System: 

The proposed system is an advanced Face 

Attendance System that combines Convolutional 

Neural Networks (CNN), Support Vector Machines 

(SVM), and K-Nearest Neighbors (KNN) 

algorithms to automate attendance tracking in 

educational institutions, businesses, and 

organizations. Leveraging CNN for precise facial 

feature extraction, the system achieves accurate 

recognition, while SVM and KNN enhance 

classification capabilities for reliable monitoring. 

This approach replaces manual methods, reducing 

errors and improving efficiency. With real-time 

monitoring and adaptability to various 

environmental conditions, the system ensures 

consistent performance. By utilizing facial 

recognition technology, it offers a secure and 

transparent solution, streamlining attendance 

tracking processes, minimizing inaccuracies, and 

enhancing productivity across diverse applications. 
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b) System Architecture: 

The proposed architecture for liver fibrosis 

classification begins with the liver fibrosis dataset 

undergoing image processing to enhance image 

quality and prepare data for analysis. Subsequently, 

multiple convolutional neural network (CNN) 

models including VGGNet, ResNet, DenseNet, 

EfficientNet, Vision Transformer (ViT), and 

Xception are built and trained. An ensemble model 

combining Xception with another model 

demonstrating superior accuracy is also developed. 

The performance of each model is rigorously 

evaluated based on accuracy metrics. This 

comprehensive approach ensures robust 

classification performance, leveraging diverse CNN 

architectures and ensemble strategies to achieve 

reliable and accurate liver fibrosis classification 

from ultrasound images. 

 

Fig 1 Proposed Architecture  

c) Dataset Collection: 

The liver fibrosis dataset comprises ultrasound 

images collected from diverse sources, ensuring a 

heterogeneous mix of imaging conditions and 

machine types. This dataset includes labeled images 

indicating various stages of liver fibrosis, from mild 

to severe, providing a comprehensive spectrum for 

training and evaluation. Each image is preprocessed 

to enhance clarity and reduce noise, making it 

suitable for analysis. The dataset is designed to 

support the training of deep learning models, with 

annotations provided by medical experts to ensure 

accuracy. By incorporating images from multiple 

machines and settings, the dataset aims to improve 

the generalizability and robustness of liver fibrosis 

classification models, facilitating reliable 

diagnostics across different clinical environments. 

d) Image Processing: 

Image processing for the liver fibrosis dataset 

involves several key steps to prepare the ultrasound 

images for analysis. Initially, images undergo noise 

reduction techniques to minimize artifacts and 

enhance clarity. Contrast adjustment and 

normalization are applied to standardize the 

intensity levels across the dataset, ensuring 

consistency. Edge detection algorithms highlight 

important features, aiding in accurate feature 

extraction. Additionally, segmentation techniques 

are used to isolate the liver region from surrounding 

tissues, focusing the analysis on the area of interest. 

These preprocessing steps are crucial for improving 

the quality of the images, thereby facilitating more 

accurate training and evaluation of deep learning 

models for liver fibrosis classification. 

e) Algorithms: 

VGGNet: VGGNet is utilized for its 

straightforward architecture consisting of 

sequential convolutional layers, which makes it 

effective for deep feature extraction. In this project, 

VGGNet serves as a baseline model to identify 

fundamental patterns in liver fibrosis ultrasound 

images. Its simplicity and effectiveness in image 

classification tasks help establish a benchmark for 

comparing more complex architectures. 

ResNet: ResNet is employed for its innovative 

residual learning framework, which addresses the 
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vanishing gradient problem in deep networks. By 

using skip connections, ResNet enhances the depth 

of the network without degrading performance. In 

this project, ResNet is used to achieve higher 

accuracy in liver fibrosis classification by 

leveraging its ability to learn deeper representations 

of the ultrasound images. 

DenseNet: DenseNet is used for its densely 

connected convolutional layers, which promote 

feature reuse and efficient gradient flow. This 

architecture helps capture intricate details in liver 

fibrosis ultrasound images by ensuring that each 

layer has direct access to the gradients from the loss 

function and the original input. DenseNet's 

efficiency and feature-rich representations make it 

a valuable model for this classification task. 

EfficientNet: EfficientNet is utilized for its 

scalable architecture that balances model depth, 

width, and resolution through compound scaling. 

This approach allows EfficientNet to achieve high 

accuracy with fewer parameters. In this project, 

EfficientNet is leveraged to provide a 

computationally efficient yet powerful model for 

liver fibrosis classification, ensuring high 

performance without excessive resource 

consumption. 

Vision Transformer (ViT): ViT is used for its 

novel approach to image classification, which 

applies transformer models to image patches 

instead of using convolutional layers. This method 

enables the capture of long-range dependencies and 

global context in the images. In the project, ViT is 

employed to explore the effectiveness of 

transformer-based architectures in identifying liver 

fibrosis patterns, potentially offering insights that 

traditional CNNs might miss. 

Xception: Xception is employed for its depthwise 

separable convolutional layers, which enhance 

model efficiency and performance. This 

architecture excels in capturing fine-grained details 

and complex patterns in ultrasound images. In the 

project, Xception is used to leverage its advanced 

feature extraction capabilities, aiming to achieve 

high accuracy in classifying liver fibrosis stages. 

Ensemble of Xception and High-Accuracy 

Model: An ensemble model combining Xception 

and the model with the highest accuracy (among 

VGGNet, ResNet, DenseNet, EfficientNet, and 

ViT) is developed to enhance classification 

performance. This ensemble approach merges the 

strengths of both models, improving robustness and 

generalization. By averaging or voting on 

predictions, the ensemble model aims to achieve 

superior accuracy and reliability in liver fibrosis 

classification compared to individual models. 

4. EXPERIMENTAL RESULTS 

Precision: Precision evaluates the fraction of 

correctly classified instances or samples among the 

ones classified as positives. Thus, the formula to 

calculate the precision is given by: 
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Fig 2 Precision Comparison Graphs 

Recall: Recall is a metric in machine learning that 

measures the ability of a model to identify all 

relevant instances of a particular class. It is the ratio 

of correctly predicted positive observations to the 

total actual positives, providing insights into a 

model's completeness in capturing instances of a 

given class. 

 

 

Fig 3 Recall Comparison Graphs 

F1-Score: F1 score is a machine learning evaluation 

metric that measures a model's accuracy. It 

combines the precision and recall scores of a model. 

The accuracy metric computes how many times a 

model made a correct prediction across the entire 

dataset. 

 

 

 

 

Fig 4 F1 Score Comparison Graphs 

Accuracy: The accuracy of a test is its ability to 

differentiate the patient and healthy cases correctly. 

To estimate the accuracy of a test, we should 

calculate the proportion of true positive and true 

negative in all evaluated cases. Mathematically, this 

can be stated as: 

 Accuracy = TP + TN TP + TN + FP + FN. 

 



       ISSN 2347–3657 

    Volume 12, Issue 3, 2024 

 
 
 
 

731 

 

Fig 5 Accuracy Comparison Graphs 

 

5. SCREENS 

 

Fig 6 Home Page 

 

Fig 7 Signup page 

 

Fig 8 Signin Page 

 

Fig 9 Main Page – Click on Five Level 

Classification 

 

Fig 10 Upload Input Image  
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Fig 11 Predicted Results 

 

Fig 12 Upload another Input Image 

 

Fig 13 Final Outcome 

 

Fig 14 Upload another Input Image 

 

Fig 15 Predicted Results 

6. CONCLUSION 

In conclusion, our study assessed the effectiveness 

of various deep learning models and ensemble 

techniques for liver fibrosis classification using 

heterogeneous ultrasound images. Extensive 

experimentation revealed significant improvements 

in classification accuracy over baseline methods. 

Notably, our ensemble approach, combining 

Xception with another high-performing model, 

achieved the highest accuracy, surpassing the 90% 

threshold. These findings underscore the potential 

of leveraging diverse CNN architectures and 

ensemble strategies to enhance diagnostic accuracy 

in medical imaging. Our results emphasize the need 

for continuous exploration and refinement of deep 

learning techniques to tackle complex medical 

diagnostic challenges effectively. With further 

validation and integration into clinical practice, 

these advancements could significantly improve 

patient care by providing clinicians with more 

reliable tools for accurate fibrosis assessment and 

treatment planning. However, ongoing research is 

crucial to explore the scalability, interpretability, 

and real-world applicability of these models in 

clinical settings. By addressing these aspects, we 

can ensure that deep learning-driven diagnostic 

tools become practical and valuable assets in 

medical diagnostics, ultimately leading to better 
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patient outcomes and more efficient healthcare 

delivery. 

7. FUTURE SCOPE 

Future research could advance liver fibrosis 

classification from ultrasound images by exploring 

larger and more diverse datasets to enhance model 

generalization and robustness. Investigating 

interpretability techniques will provide insights into 

model predictions, aiding clinical decision-making. 

Additionally, integrating real-time image 

processing capabilities into the system could enable 

automated fibrosis assessment during medical 

examinations, improving diagnostic efficiency and 

patient care. These advancements will ensure that 

deep learning models become practical, reliable 

tools in clinical settings, ultimately leading to better 

patient outcomes and more efficient healthcare 

delivery. 
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