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Abstract 

Advanced fault injection approaches for continuous resilience testing have significantly enhanced 

the robustness and dependability of cloud-based systems. The implementation of these strategies 

in Amazon Web Services (AWS) environments is the main emphasis of this study, which makes 

use of AWS CloudWatch, AWS X-Ray, AWS Step Functions, AWS Lambda, and AWS Fault 

Injection Simulator (FIS). The system has become significantly better at handling and recovering 

from numerous failure scenarios, such as network slowness, CPU and memory load, API errors, 

and instance terminations. Key findings indicate that the system successfully handled the increased 

load without crashing, stabilized resource use after earlier rises, and remained to function despite 

API errors. It also maintained acceptable performance levels with only a 10% increase in latency 

during simulated delays. service availability was maintained by auto-scaling methods that quickly 

replaced terminated instances. Maintaining systems' robustness and reliability under pressure 

requires proactive fault injection and real-time monitoring. The aforementioned approach not only 

detects and addresses such vulnerabilities but also guarantees the continued stability and 

dependability of systems, enabling them to withstand unforeseen malfunctions and sustain service 

availability in frequently changing cloud environments. 

Keywords: Resilience testing, Fault injection, AWS FIS, Cloud reliability, System robustness, 

Automated recovery, Chaos engineering. 

 

1 Introduction: 

Cloud computing has transformed how 

organizations design and deploy applications, 

providing extraordinary scalability, 

flexibility, and cost-efficiency. However, 

assuring the resilience and stability of cloud-

based systems remains a significant problem, 

particularly in dynamic and advanced 

settings like those provided by Amazon Web 

Services (AWS).  
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To meet this problem, continuous resilience 

testing has evolved as a critical practice for 

proactively identifying and mitigating 

potential flaws and vulnerabilities in AWS 

settings. This study focuses on using 

sophisticated fault injection techniques in the 

context of continuous resilience testing to 

improve the reliability of AWS services. 

 

Chaos engineering has gained popularity as a 

strong method for assessing and improving 

the resiliency of cloud infrastructures, 

particularly those hosted by AWS. Chaos 

engineering allows organizations to identify 

weaknesses and vulnerabilities before they 

become serious issues by intentionally 

introducing errors and breakdowns into 

systems. While classic fault injection 

approaches have shown to be effective, 

technological improvements, notably in 

AWS-specific tools like the AWS Fault 

Injection Simulator (FIS), offer additional 

possibilities for advanced and accurate 

resilience testing. 

 

Adopting advanced fault injection techniques 

is crucial for continuous resilience testing in 

AWS environments for several reasons. 

Firstly, it is difficult to predict and prevent 

every possible failure scenario using manual 

testing alone due to the growing complexity 

and interconnection of cloud-based systems. 

Second, an automated and proactive 

approach to resilience testing is required due 

to the dynamic nature of AWS services, 

which are marked by frequent updates and 

modifications. Ultimately, the increasing 

frequency of security threats and 

cyberattacks highlights the significance of 

thoroughly evaluating and strengthening the 

resilience of AWS infrastructures against 

both unintentional malfunctions and 

intentional breaches. 

 

Fault injection approaches for resilience 

testing currently have far more capabilities 

and efficiency because of recent 

developments in AWS tools and services. For 

example, AWS FIS offers a managed service 

that makes it easier to introduce faults into 

AWS resources. This enables businesses to 

run controlled experiments to evaluate how 

their system reacts to different failure 

scenarios. Furthermore, AWS X-Ray and 

CloudWatch provide extensive tracing and 

monitoring features that enable organizations 

to analyze the way systems react during fault 

injection tests. 

 

The primary objective of the research is to 

examine the possibility and effectiveness of 

implementing advanced fault injection 

methods, specifically by exploiting AWS 

FIS, for ongoing resilience testing in AWS 

environments. The study's specific objectives 

are to: 

• Examine how AWS FIS simulates 

realistic failure scenarios for various 

AWS services and settings, as well as 

its limits. 

• Evaluate the way advanced fault 

injection strategies affect the 

robustness and dependability of 

systems and apps running on AWS. 

• Provide best practices and guidelines 

for the use of advanced fault injection 

techniques in AWS settings to enable 

continuous resilience testing. 

 

There is a noticeable lack of research directly 

addressing the use of advanced fault injection 

techniques, especially in the context of AWS 

environments, even though the concept of 

chaos engineering and its application in cloud 

environments have been thoroughly covered 

in the literature that has already been 

published. To fill this gap, the present article 
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offers a thorough investigation of the 

possibility and effectiveness of using 

Amazon FIS for continuous resilience 

testing. 

 

Ensuring the robustness and dependability of 

AWS-based applications remains a major 

concern for enterprises, even with the 

developments in cloud computing 

technologies. The intricate and dynamic 

nature of AWS systems is frequently too 

complicated and dynamic for traditional 

resilience testing techniques to fully evaluate. 

Therefore, in attempting to actively identify 

and solve potential weaknesses and 

vulnerabilities in AWS infrastructures, 

improved fault injection techniques together 

with automated and continuous testing 

practices are needed.  

 

2 Literature Review: 

Chaos engineering can improve cloud 

infrastructure security and resilience, 

according to Torkura et al. (2020). To assess 

the resilience of cloud systems, the authors 

present a methodology that intentionally 

introduces errors and mimics attacks. They 

create several attack scenarios, trigger these 

problems automatically, and watch the 

system's reaction with monitoring tools. By 

doing so, cloud environments become more 

dependable and safer by reducing 

vulnerabilities and enhancing recovery 

procedures. 

 

Rossi (2024) explores methods to improve 

microservices on AWS infrastructure by 

utilizing cloud-native DevOps approaches. 

The article demonstrates how cloud-native 

DevOps and microservices design can 

improve the scalability, robustness, and 

deployment speed of applications. The 

advantages of utilizing AWS technologies for 

continuous integration and deployment 

(CI/CD), the significance of infrastructure as 

code (IaC), and methods for efficiently 

managing and monitoring microservices are 

some of the main highlights. The study 

emphasizes how this strategy can improve 

productivity and shorten the time it takes for 

software applications to reach the market. 

 

The viability and effectiveness of executing 

the Community Earth System Model 

(CESM) on Amazon AWS are investigated 

by Chen et al. (2017). This study aims to 

investigate the scalability, performance, and 

affordability of modelling climate data in a 

commercial cloud environment. Important 

conclusions include the fact that AWS can 

adequately scale resources up or down in 

response to workload and that it is less 

expensive than traditional supercomputing 

resources when handling the computational 

demands of CESM. The research shows that 

executing sophisticated climate models on 

commercial cloud services might be a 

practical and effective choice. 

 

Wang et al. (2017) describe a deep 

reinforcement learning-based approach for 

automated cloud provisioning on AWS. The 

study demonstrates how this strategy can 

lower expenses, optimize resource allocation, 

and enhance performance in cloud systems. 

Important developments include the creation 

of a reinforcement learning model that 

dynamically modifies cloud resources in 

response to workload needs, exhibiting 

notable efficiency gains over conventional 

techniques. According to the research, deep 

reinforcement learning is capable of 

managing cloud resources efficiently, 

guaranteeing cost savings and appropriate 

provisioning. 

 

 

Non-intrusive fault injection approaches are 

investigated by Bandeira et al. (2019) to 

effectively analyze a system's susceptibility 

to soft errors. To enable precise and effective 
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vulnerability evaluations, the article 

describes techniques that introduce flaws into 

a system without affecting its regular 

functionality. Notably, these methods may 

efficiently detect and examine soft error 

vulnerabilities with little impact on system 

performance. The findings highlight the 

usefulness and efficiency of non-intrusive 

techniques for enhancing system robustness 

and dependability against soft failures. 

 

Meng et al. (2018) concentrate on ways to 

optimize the injector fault injection tool. The 

project investigates methods to improve the 

injector's efficacy and efficiency in imitating 

defects. The creation of optimization 

techniques to lower computational overhead 

and raise fault injection accuracy are two 

significant developments. The study shows 

how these techniques might improve the fault 

injection process's efficiency and practicality 

for evaluating the resilience of a system to 

failures. 

 

Spruyt et al. (2021) discuss fault injection as 

an oscilloscope-like instrument for fault 

correlation investigation. This study 

investigates how intentional flaws in 

cryptographic hardware might provide 

information on system vulnerabilities and 

behaviour. Highlights include examining 

fault correlation patterns to find possible 

flaws in cryptography implementations and 

strengthen their defences against intrusions. 

The findings highlight the value of fault 

injection as a diagnostic technique for 

assessing cryptographic systems' security and 

strengthening their resilience. 

 

A charge-based fault model is used in Liao 

and Gebotys' (2019) methodology for 

electromagnetic (EM) fault injection. To 

improve fault injection efficiency and 

accuracy, the paper presents methods for 

modelling electromagnetic malfunctions in 

hardware designs. Important developments 

include the creation of a charge-based fault 

model that can precisely describe 

electromagnetic faults and the use of this 

model to introduce faults into hardware 

designs to do vulnerability analysis. The 

study highlights the significance of EM fault 

injection in assessing hardware resilience to 

electromagnetic interference. 

 

Crowbar-based fault injection strategies for 

embedded systems are investigated by 

O'Flynn (2016). The study looks into how 

embedded systems' resistance to faults might 

be evaluated via crowbar-based fault 

injection. The creation of techniques for 

crowbar-based fault injection and the 

analysis of the effects of these faults on 

embedded systems' security and functioning 

are significant developments. The study 

emphasizes how important crowbar-based 

fault injection is as a useful instrument for 

assessing and enhancing embedded systems' 

resilience against potential threats and 

weaknesses. 

 

Research by Bailey et al. (2022) uses chaos 

engineering experiments to determine how 

resilient a system of systems (SoS) is. The 

study investigates the use of chaotic 

engineering concepts to evaluate the 

resilience and robustness of networked 

systems. The use of chaos experiments to 

model different failure scenarios and assess 

the system's resilience to disturbances are 

among the main features. The work 

highlights how critical chaotic engineering is 

to finding weak points and enhancing the 

overall robustness of complex systems of 

systems. 

 

Using targeted network degradation and 

automatic fault injection, Pierce et al. (2021) 

investigate chaos engineering experiments in 

middleware systems. The study looks into 

how middleware systems might be made 

more resilient under different failure 
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scenarios by applying chaos engineering 

techniques. Some important characteristics 

are the use of automatic fault injection to test 

the system's reaction and the implementation 

of targeted network degradation. According 

to the research, chaotic engineering is crucial 

for finding flaws in middleware systems and 

strengthening their overall resilience. 

 

Using energy-efficient fault tolerance 

strategies in green cloud computing, Bharany 

et al. (2022) carried out a thorough survey 

and taxonomy. In cloud computing systems, 

the research examines methods to improve 

fault tolerance while reducing energy usage. 

The comprehensive examination of diverse 

fault tolerance strategies, including energy-

conscious fault detection algorithms and 

redundancy-based methods, is one of the 

main concepts. To accomplish cloud 

computing sustainability goals, the research 

highlights how critical it is to implement 

energy-efficient fault tolerance techniques. 

 

3 Advanced Fault Injection for 

Continuous Resilience Testing in AWS 

 

Continuous resilience testing is the process of 

periodically evaluating cloud-based systems 

to assess their ability to withstand and 

recover from various fault scenarios. This 

technique tries to ensure that AWS 

environments can handle errors gently while 

maintaining service availability. These tests 

provide a comprehensive assessment of 

system resilience by using advanced fault 

injection techniques, notably the AWS Fault 

Injection Simulator (FIS). Regularly testing 

the system's response to various failures 

enables organizations to identify and solve 

any vulnerabilities in advance of time, 

maintaining consistent performance and 

reliability. 

 

3.1 Architectural Overview: 

 

AWS's system design for continuous 

resilience testing is based on several essential 

elements which operate in concert to 

effectively and smoothly simulate and 

monitor fault scenarios. The central 

component is the AWS Fault Injection 

Simulator (FIS), which simulates several 

failure situations, including resource limits, 

network delays, and instance terminations, by 

injecting controlled faults into the AWS 

environment to identify flaws and areas that 

could use improvement. When doing fault 

injection experiments and gathering statistics 

on CPU usage, memory consumption, 

latency, and error rates, AWS CloudWatch is 

an essential tool for tracking and recording 

system performance. This gives users 

immediate insight into the system's stress 

management capabilities and triggers alarms 

to start automated processes when 

performance metrics rise above 

predetermined limits.  

 

When doing fault injection testing, AWS X-

Ray is used to trace and debug microservice 

performance, follow requests as they traverse 

the system, and highlight delay and error 

spots to determine which system components 

are most impacted. Fault injection 

experiments are initiated and managed 

automatically using AWS Lambda functions. 

They are started at specific times or in 

reaction to predefined events, and they 

handle responsibility for the recovery process 

execution to guarantee consistency and 

repeatability of resilience tests. AWS Step 

Functions manage the flow of actions from 

configuring the test environment and 

injecting faults to tracking the system's 

reaction and starting recovery procedures. It 

makes sure that every step is carried out 

correctly and by plan. 
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Fig. 1: AWS Components in Continuous Resilience Testing 

Figure 1, illustrates the way various AWS 

components are integrated for continuous 

resilience testing. Together, Amazon 

Lambda, AWS CloudWatch, AWS X-Ray, 

AWS Fault Injection Simulator (FIS), and 

AWS Step Functions enable the injection of 

faults, performance monitoring, and recovery 

management. 

AWS components that are used in continuous 

resilience testing smoothly cooperate to 

monitor the system and simulate disruptions. 

AWS Lambda is the first step in the process; 

it can be used to schedule or respond to 

particular events to initiate a fault injection 

experiment using AWS Fault Injection 

Simulator (FIS). The intended AWS 

resources, such as EC2 instances or RDS 

databases, are then injected with the 

predetermined faults by FIS. AWS 

CloudWatch tracks any irregularities in 

system metrics including CPU utilization, 

memory consumption, and latency during the 

trial. Request flow analysis is done by AWS 

X-Ray, which offers comprehensive insights 

into latency and error sources. 

 

Every stage of the process is coordinated by 

AWS Step Functions, which guarantee 

accurate execution of all tasks, including 

monitoring, recovery, and fault injection. 

AWS Lambda functions are triggered by 

CloudWatch alarms or Step Functions to take 
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recovery steps, such as restarting services or 

changing resources if abnormalities occur. 

By combining automated management, 

continuous monitoring, and fault injection, 

this design makes it possible to proactively 

detect and address problems, resulting in 

more dependable and resilient AWS services. 

 

3.2 Advanced Fault Injection Techniques: 

 

To extensively test a system's resilience, fault 

injection includes simulating several failure 

situations. Network latency injection is a 

crucial situation that determines how 

effectively the system functions when replies 

are slow by intentionally lengthening the 

network connection delay. CPU and memory 

stress is a crucial situation in which a system 

is tested for its ability to withstand high loads 

without crashing by creating high CPU and 

memory utilization. The system's error 

handling and recovery capabilities are also 

tested by creating random API faults. This 

aids in finding and addressing any flaws in 

the system's ability to handle unforeseen 

issues. Finally, by simulating instance 

termination, one may evaluate the system's 

ability to scale and maintain availability in 

the event of a component breakdown. 

Together, these scenarios guarantee that the 

system is resilient to different problems and 

can keep performing as designed. 

3.3 Fault Injection Implementation 

3.3.1 Network Latency Injection 

Using AWS FIS, network latency can be 

simulated by creating a template that 

indicates the delay which will be added to 

network communications. This template 

specifies the parameters for latency injection 

and targets particular EC2 instances. 

Algorithm: Network Latency Injection 

Template Creation 

Inputs: 

• fis_client: An initialized AWS Fault 

Injection Simulator (FIS) client 

• network_latency_template: A 

dictionary defining the network 

latency injection parameters 

Outputs: 

• response: The response from creating 

the experiment template in AWS FIS 

To create a network latency injection 

template, first initialize the AWS Fault 

Injection Simulator (FIS) client using 

boto3.client('fis'). Define the template with 

key components: description ('Inject network 

latency'), target resource type ('aws:ec2'), 

target instances (specified by ARNs), actions 

(introducing a 200ms network delay), and 

stop conditions (based on a CloudWatch 

alarm). Then, call the 

create_experiment_template method with 

these parameters to create the template and 

capture the response. 

 

Inject a network latency of Δ𝑡 = 200 ms into 

an AWS EC2 instance and determine the new 

system response time. 

• 𝑇0: Original response time (without 

latency), assumed to follow a normal 

distribution 𝑁(𝜇, 𝜎2) 

• 𝑇𝐿: Response time with injected 

latency 

Given 

• Injected latency Δ𝑡 = 200 ms 

Equations 1 and 2 express, 
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1. Original Response Time Distribution: 

𝑇0 ∼ 𝑁(𝜇, 𝜎2)                                                     

(1) 

where 𝜇 is the mean response time and 𝜎 is 

the standard deviation. 

       2. New Response Time with Latency: 

𝑇𝐿 = 𝑇0 + Δ𝑡                                                           (2) 

Since Δ𝑡 is a constant delay has been 

expressed in equation 3. 

                                                                   

𝑇𝐿 ∼ 𝑁(𝜇 + Δ𝑡, 𝜎2)                                                  

(3) 

Assuming: 

• Original mean response time 𝜇 =
500 ms 

• Standard deviation 𝜎 = 50 ms 

With 200ms Latency: 

• New mean response time: 𝜇′ = 𝜇 +
Δ𝑡 = 500 + 200 = 700 ms 

• Standard deviation remains 

unchanged: 𝜎′ = 𝜎 = 50 ms 

In Equation 4, New Response Time 

Distribution; 

                                                            𝑇𝐿 ∼
𝑁(700, 502)                                                         

(4) 

This provides a concise mathematical 

derivation of the expected impact on system 

response time due to injected network 

latency. 

3.3.2 CPU and Memory Stress 

Executing a stress command on specific 

instances with AWS Systems Manager 

(SSM) is how CPU and memory stress is 

created. To observe the system's 

responsiveness under severe load, this 

command artificially loads the CPU and 

memory. 

Algorithm: CPU Stress Experiment 

Template Creation 

Inputs: 

• cpu_stress_template: A dictionary 

defining the CPU stress experiment 

template parameters. 

Outputs: 

• response: Response from the FIS 

client indicating the result of the 

experiment template creation. 

Use boto3.client('fis') to initialize the AWS 

Fault Injection Simulator (FIS) client to make 

the experiment template construction process 

easier. Create the cpu_stress_template and set 

its parameters so that an EC2 instance's CPU 

can be stressed using a shell script command. 

Using the FIS client's 

create_experiment_template function, create 

the experiment template by supplying its 

description, targets, actions, and stop 

conditions as parameters. To give feedback 

on the template development process, store 

the outcome of the API call in the response 

variable and print it. 

 

3.3.3 CPU Stress Derivation 

Objective: Inject CPU stress to analyze the 

impact on system performance. 

Definitions 

• 𝑈0: Original CPU utilization, 

assumed to follow a normal 

distribution 𝑁(𝜇, 𝜎2) 

• 𝑈𝑆: CPU utilization under stress 
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Given 

• Injected CPU stress Δ𝑈 (percentage 

increase in CPU usage) 

In Equations 5 and 6 express, 

1. Original CPU Utilization 

Distribution: 

                                                               𝑈0 ∼

𝑁(𝜇, 𝜎2)                                                            

(5) 

where 𝜇 is the mean CPU utilization and 𝜎 is 

the standard deviation. 

2. New CPU Utilization with Stress: 

                                                    𝑈𝑆 = 𝑈0 +

Δ𝑈                                                                         

(6) 

Since Δ𝑈 is a constant increase in CPU 

utilization as expressed in equation 7, 

                                                𝑈𝑆 ∼ 𝑁(𝜇 +

Δ𝑈, 𝜎2)                                                                  

(7) 

Assuming: 

• Original mean CPU utilization 𝜇 =
30% 

• Standard deviation 𝜎 = 5% 

• Injected CPU stress Δ𝑈 = 40% 

Equations 8 and 9, clarifies with CPU Stress: 

• New mean CPU utilization: 

                                        𝜇′ = 𝜇 + Δ𝑈 =

30% + 40% = 70%                                                

(8) 

• Standard deviation remains 

unchanged: 

                                                          𝜎′ =

𝜎 = 5%                                                                    

(9) 

New CPU Utilization Distribution has been 

expressed in equation 10, 

                                                     𝑈𝑆 ∼

𝑁(70%, 52)                                                                  

(10) 

Objective: Inject memory stress to analyze 

the impact on system performance. 

Definitions 

• 𝑀0: Original memory utilization, 

assumed to follow a normal 

distribution 𝑁(𝜇, 𝜎2) 

• 𝑀𝑆: Memory utilization under stress 

Given 

• Injected memory stress Δ𝑀 

(percentage increase in memory 

usage) 

In equation 11 and 12 express, 

1. Original Memory Utilization 

Distribution: 

                                                          𝑀0 ∼

𝑁(𝜇, 𝜎2)                                                               

(11) 

where 𝜇 is the mean memory utilization and 

𝜎 is the standard deviation. 

2. New Memory Utilization with Stress: 
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                                                           𝑀𝑆 =

𝑀0 + Δ𝑀                                                                

(12) 

Since Δ𝑀 is a constant increase in memory 

utilization has been expressed in equation 13, 

                                                        𝑀𝑆 ∼

𝑁(𝜇 + Δ𝑀, 𝜎2)                                                          

(13) 

Assuming: 

• Original mean memory utilization 

𝜇 = 50% 

• Standard deviation 𝜎 = 10% 

• Injected memory stress Δ𝑀 = 30% 

Equations 14 and 15, have been clarified with 

Memory Stress. 

• New mean memory utilization: 

                                           𝜇′ = 𝜇 + Δ𝑀 =

50% + 30% = 80%                                            

(14) 

• Standard deviation remains 

unchanged: 

                                                        𝜎′ = 𝜎 =

10%                                                                    

(15) 

New Memory Utilization Distribution has 

been expressed in equation 16, 

                                                         𝑀𝑆 ∼

𝑁(80%, 102)                                                            

(16) 

These derivations provide a mathematical 

framework for understanding the impact of 

CPU and memory stress tests on system 

performance. By modelling these stress 

impacts, organizations can better prepare for 

real-world scenarios where system resources 

may be strained. 

4. Continuous Testing Framework 

4.1 Automation with AWS Lambda and 

Step Functions 

Continuous Resilience Testing requires 

automation. To ensure continuous 

assessment of system resilience, fault 

injection experiments can be scheduled and 

triggered using AWS Lambda functions. The 

fault injection, monitoring, and recovery 

steps are coordinated by AWS Step 

Functions. 
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Fig. 2: Lambda Function Example for Fault Injection 

This figure illustrates the way to initiate fault 

injection experiments using a Lambda 

function. Starting the tests based on specified 

templates, the function calls AWS FIS API 

methods. Amazon CloudWatch Events can 

be used to schedule the function's triggering 

and to have it happen in response to 

predefined events. 

 

To begin fault injection tests, a Lambda 

function can be developed that calls the 

relevant AWS FIS API methods. Amazon 

CloudWatch Events can be used to 

periodically activate this function. 

 

Algorithm: Network Latency Experiment 

Start 

 

Inputs: 

event: The event data that triggers the 

Lambda function. 

context: The context in which the Lambda 

function is called. 

Outputs: 

response: Response indicating the status of 

the experiment start request. 

 
Initialize the AWS Fault Injection Simulator 

(FIS) client using boto3.client('fis'). This 

client will facilitate the starting of the 

network latency experiment. Use the 

start_experiment method of the FIS client to 

initiate the experiment by providing the 

experiment template ID. Store the result of 

this API call in the response variable. Finally, 

return a JSON response indicating the 

success of the experiment start. 

5. Monitoring and Analysis 

5.1 CloudWatch and X-Ray Integration 

Integration of AWS CloudWatch and AWS 

X-Ray for monitoring and analyzing system 

performance during fault injection tests in 

Figure 3. During fault injection studies, 

system performance is closely monitored and 

analyzed using AWS CloudWatch and X-

Ray. Real-time insight into the system's 

health is provided by CloudWatch, which 

gathers metrics including CPU and memory 

use, error rates, and latency. To analyze 

microservice interactions and performance 

bottlenecks in detail, X-Ray provides 

comprehensive tracing and debugging tools. 
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Fig. 3: Data Analysis with CloudWatch and X-Ray 

In Figure 3, To find patterns and insights, the 

data gathered from CloudWatch and X-Ray 

is evaluated. This study points up areas in 

need of improvement and aids in 

understanding how the system performs 

under various fault scenarios. To provide an 

overview of the results and practical 

suggestions, reports are produced regularly. 

For instance, identifying particular 

microservices that are especially prone to 

delays during a network latency injection 

experiment can help direct focused 

improvements in those areas. 

6 Results and Discussions 

The system's robustness and reliability have 

significantly increased due to ongoing 

resilience testing using sophisticated fault 

injection techniques. The system has 

demonstrated its ability to properly manage 

numerous failure scenarios, including 

network slowness, CPU and memory stress, 

API errors, and instance terminations, by 

simulating them. The system's performance 

only decreased by 10% in latency throughout 

the simulated delays, handling an increased 

load without crashing, and resource use 

stabilizing after the first spikes are 

encouraging outcomes. Furthermore, auto-

scaling quickly replaced any terminated 

instances to ensure ongoing service 

availability, and the application continued 

functioning even when faced with API errors. 

 

Continuous resilience testing with AWS FIS 

and other AWS services has shown to be 

quite successful in identifying and addressing 

potential vulnerabilities in cloud-based 

systems. Through proactive fault injection 

and real-time monitoring made possible by 

this automated method, systems are kept 

robust and dependable even under pressure. 

The ability to detect anomalies before they 

become problems, automated recovery with 

AWS Lambda and Step Functions, and 

increased system resilience are some of the 

main benefits. Regular fault injection 



   

Volume 10, Issue 3, Aug 2022           

   ISSN 2347–3657  
 
 

experiments, thorough monitoring with AWS 

CloudWatch and X-Ray, and automated 

recovery systems to promptly address errors 

are all recommended by best practices. 

Continuous resilience testing is beneficial in 

enhancing system resilience and 

guaranteeing constant performance in 

dynamic cloud settings, making it essential 

for preserving the robustness and 

dependability of AWS-based applications. 

 

Fig. 4: Comparison of network latency metrics before and after fault injection 

experiments 

In Fig. 4, the system's network latency metrics are shown in this figure both before and after fault 

injection. It illustrates how the system adjusts to longer network delays by showing the effect of 

injected network latency on response times. 
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Fig. 5:  CPU utilization metrics comparison before and after fault injection experiments 

The difference in CPU utilization before and after fault injection is depicted in Figure 5. It 

demonstrates the way the system responds to a higher CPU load, showing how well resilience 

testing works to control situations with high CPU utilization. 

 

 

 

Fig. 6: Memory Utilization Before and After Fault Injection 

The memory usage metrics before and after fault injection are compared in Figure 6. It 

demonstrates how the system reacts to a rise in memory demand, guaranteeing stability and 

functionality under pressure. 
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Fig. 7: Error Rates Comparison Before and After Fault Injection 

The error rates seen in the system before and after fault injection are depicted in Figure 7. It reveals 

any potential weaknesses by demonstrating how well the system's error-handling systems function 

under pressure. 

 

 

Fig. 8: Instance availability metrics during fault injection experiments 

The instance availability metrics from the fault injection studies are shown in Figure 8. It illustrates 

the resilience of auto-scaling and failover capabilities by showcasing how the system keeps 

availability and bounces back from instance terminations quickly. 

 

Table 1, summarizes the system performance metrics before and after fault injection with its clear 

comparison of the metrics. 

Metric Initial Fault Injection After Fault Injection 

Network Latency (ms) 500.0 700.0 

CPU Utilization (%) 30.0 70.0 

Memory Utilization (%) 50.0 80.0 

Error Rates (%) 0.5 5.0 

Instance Availability (%) 100.0 95.0 
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Fig. 9: Comparison of Performance Metrics Under Different Conditions 

The effects of various factors on memory 

stress, CPU stress, and network latency are 

depicted in this diagram. The first chart 

shows a noticeable delay as response time 

grows from roughly 500 milliseconds in the 

initial state to roughly 700 milliseconds with 

additional latency. The CPU is working 

significantly harder, as evidenced by the 

second chart, which shows CPU utilization 

rising from 30% in the initial state to 70% 

under stress. Memory utilization is shown in 

the third chart, which increases under stress 

from 50% in the initial state to 80%, 

suggesting increasing memory usage. All 

things taken into account, these graphs show 

how performance is greatly impacted by 

increasing network latency and system stress, 

which causes longer reaction times and more 

resource use. 

 

7 Conclusion: 

 

Maintaining the robustness and dependability 

of AWS-based apps requires ongoing 

resilience testing with advanced fault 

injection techniques. This method has shown 

to be successful in identifying and resolving 

possible vulnerabilities in cloud systems. It 

makes use of AWS Fault Injection Simulator 

(FIS) and other AWS services. Systems 

maintain their resilience even in the face of 

stress thanks to the automated process's 

proactive fault injection and real-time 

monitoring capabilities. Essential techniques 

include frequent testing, thorough 

monitoring, and automated recovery. This 

study demonstrates that maintaining 

availability and consistent performance in 

dynamic cloud systems requires ongoing 

resilience testing. 

Future improvements might include adding 

machine learning to anticipate and prevent 

problems before they happen, increasing the 

variety of failure scenarios that can be 

simulated, and developing more complicated 

automated recovery processes. These 

enhancements will guarantee that cloud-

based systems are significantly more robust 

and dependable, enabling them to tackle 

increasingly complicated and erratic 

problems. 

 

References: 

1. Torkura, K. A., Sukmana, M. I., 

Cheng, F., & Meinel, C. (2020). 

Cloudstrike: Chaos engineering for 



   

Volume 10, Issue 3, Aug 2022           

   ISSN 2347–3657  
 
 

security and resiliency in cloud 

infrastructure. IEEE Access, 8, 

123044-123060. 

2. Rossi, I. (2024). Cloud-Native 

DevOps: Unleashing the Power of 

Microservices on AWS 

Infrastructure. Integrated Journal of 

Science and Technology, 1(2). 

3. Chen, X., Huang, X., Jiao, C., 

Flanner, M. G., Raeker, T., & Palen, 

B. (2017). Running climate model on 

a commercial cloud computing 

environment: A case study using 

Community Earth System Model 

(CESM) on Amazon 

AWS. Computers & Geosciences, 98, 

21-25. 

4. Wang, Z., Gwon, C., Oates, T., & 

Iezzi, A. (2017). Automated cloud 

provisioning on AWS using deep 

reinforcement learning. arXiv 

preprint arXiv:1709.04305. 

5. Bandeira, V., Rosa, F., Reis, R., & 

Ost, L. (2019, October). Non-

intrusive fault injection techniques for 

efficient soft error vulnerability 

analysis. In 2019 IFIP/IEEE 27th 

International Conference on Very 

Large Scale Integration (VLSI-

SoC) (pp. 123-128). IEEE. 

6. Meng, X., Tan, Q., Shao, Z., Zhang, 

N., Xu, J., & Zhang, H. (2018, 

March). Optimization methods for the 

fault injection tool injector. In 2018 

International Conference on 

Information and Computer 

Technologies (ICICT) (pp. 31-35). 

IEEE. 

7. Spruyt, A., Milburn, A., & 

Chmielewski, Ł. (2021). Fault 

injection as an oscilloscope: fault 

correlation analysis. IACR 

Transactions on Cryptographic 

Hardware and Embedded Systems, 

192-216. 

8. Liao, H., & Gebotys, C. (2019, 

March). Methodology for em fault 

injection: Charge-based fault model. 

In 2019 Design, Automation & Test in 

Europe Conference & Exhibition 

(DATE) (pp. 256-259). IEEE. 

9. O'Flynn, C. (2016). Fault injection 

using crowbars on embedded 

systems. Cryptology ePrint Archive. 

10. Bailey, T., Marchione, P., Swartz, P., 

Salih, R., Clark, M. R., & Denz, R. 

(2022, May). Measuring resiliency of 

system of systems using chaos 

engineering experiments. 

In Disruptive Technologies in 

Information Sciences VI (Vol. 12117, 

pp. 20-32). SPIE. 

11. Pierce, T., Schanck, J., Groeger, A., 

Salih, R., & Clark, M. R. (2021, 

April). Chaos engineering 

experiments in middleware systems 

using targeted network degradation 

and automatic fault injection. In Open 

Architecture/Open Business Model 

Net-Centric Systems and Defense 

Transformation 2021 (Vol. 11753, 

pp. 24-36). SPIE. 

12. Bharany, S., Badotra, S., Sharma, S., 

Rani, S., Alazab, M., Jhaveri, R. H., 

& Gadekallu, T. R. (2022). Energy 

efficient fault tolerance techniques in 

green cloud computing: A systematic 

survey and taxonomy. Sustainable 

Energy Technologies and 

Assessments, 53, 102613. 


