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ABSTRACT 

 

Today, Android is one of the most used 

operating systems in smartphone 

technology. This is the main reason, 

Android has become the favorite target for 

hackers and attackers. Malicious codes are 

being embedded in Android applications in 

such a sophisticated manner that detecting 

and identifying an application as a 

malware has become the toughest job for 

security providers. In terms of ingenuity 

and cognition, Android malware has 

progressed to the point where they're more 

impervious to conventional detection 

techniques. Approaches based on machine 

learning have emerged as a much more 

effective way to tackle the intricacy and 

originality of developing Android threats. 

They function by first identifying current 

patterns of malware activity and then using 

this information to distinguish between 

identified threats and unidentified threats 

with unknown behavior. This research 

paper uses Reverse Engineered Android 

applications’ features and Machine 

Learning algorithms to find vulnerabilities 

present in Smartphone applications. Our 

contribution is twofold. Firstly, we 

propose a model that incorporates more 

innovative static feature sets with the 

largest current datasets of malware 

samples than conventional methods. 

Secondly, we have used ensemble learning 

with machine learning algorithms such as 

AdaBoost, SVM, etc. to improve our 

model's performance. Our experimental 

results and findings exhibit 96.24% 

accuracy to detect extracted malware from 

Android applications, with a 0.3 False 

Positive Rate (FPR). The proposed model 

incorporates ignored detrimental features 

such as permissions, intents, API calls, and 

so on, trained by feeding a solitary 

arbitrary feature, extracted by reverse 

engineering as an input to the machine. 
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1. INTRODUCTION 

 

                 To this degree, it is guaranteed 

that mobile devices are an integral part of 

most people's daily lives. Furthermore, 

Android now controls the vast majority of 

mobile devices, with Android devices 

accounting for an average of 80% of the 

global market share over the past years. 

With the ongoing plan of Android to a 

growing range of smart phones and 

consumers around the world, malware 

targeting Android devices has increased as 

well. Since it is an open-source operating 

system, the level of danger it poses, 

with malware authors and 

programmers implementing 

unwanted permissions, features and 

application components in Android apps. 

The option to expand its capabilities with 

third-party software is also appealing, but 

this capability comes with the risk of 

malicious device attacks. When the 

number of smart phone apps increases, so 

does the security problem with 

unnecessary access to different personal 

resources. As a result, the applications are 

becoming more insecure, and they are 

stealing personal information, SMS frauds, 

ransom ware, etc.  

 In contrast to static analysis methods such 

as a manual assessment of 

AndroidManifest.xml, source files and 

Dalvik Byte Code and the complex 

analysis of a managed environment to 

study the way it treats a program, Machine 

Learning includes learning the 

fundamental rules and habits of the 

positive and malicious settings of apps and 

then data-venabling. The static attributes 

derived from an application are 

extensively used in machine learning 

methodologies and the tedious task of this 

can be relieved if the static features of 

reverse-engineered Android Applications 

are extracted and use machine learning 

SVM algorithm, logistic progression, 

ensemble learning and other algorithms to 

help train the model for prediction of these 

malware applications 

 

2. EXISTINGSYSTEM 

 

The methods proposed in this 

related work contribute to key aspects and 

a higher predictive rate for malware 

detection. Certain research has focused on 

increasing accuracy, while others have 

focused on providing a larger dataset, 

some have been implemented by 

employing various feature sets, and many 

studies have combined all of these to 

improve detection rate efficiency. In [21] 

the authors offer a system for detecting 

Android malware apps to aid in the 
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organization of the Android Market. The 

proposed framework aims to provide a 

machine learning-based malware detection 

system for Android to detect malware apps 

and improve phone users' safety and 

privacy. This system monitors different 

permission-based characteristics and 

events acquired from Android apps and 

examines these features employing 

machine learning classifiers to determine if 

the program is goodware or malicious.  

 

The paper uses two datasets with 

collectively 700 malware samples and 160 

features. Both datasets achieved 

approximately 91% accuracy with Random 

Forest (RF) Algorithm. [22] Examines 

5,560 malware samples, detecting 94 % of 

the malware with minimal false alarms, 

where the reasons supplied for each 

detection disclose key features of the 

identified malware. Another technique 

[23] exceeds both static and dynamic 

methods that rely on system calls in terms 

of resilience. Researchers demonstrated 

the consistency of the model in attaining 

maximum classification performance and 

better accuracy compared to two state-of-

the-art peer methods that represent both 

static and dynamic methodologies over for 

nine years through three interrelated 

assessments with satisfactory malware 

samples from different sources. Model 

continuously achieved 97% F1- measure 

accuracy for identifying applications or 

categorizing malware. 

Disadvantages 

❖ The system is not 

implementedmachine learning 

algorithm and ensemble learning. 

❖ The system is not 

implementedReverse 

Engineered Applications 

characteristics. 

 

 

3. PROPOSED SYSTEM 

We present a novel subset of 

features for static detection of Android 

malware, which consists of seven 

additional selected feature sets that are 

using around 56000 features from these 

categories. On a collection of more than 

500k benign and malicious Android 

applications and the highest malware 

sample set than any state-of-the-art 

approach, we assess their stability. The 

results obtain a detection increase in 

accuracy to 96.24 % with 0.3% false-

positives. 

With the additional features, we have 

trained six classifier models or machine 

learning algorithms and also implemented 

a Boosting ensemble learning approach 

(AdaBoost) with a Decision Tree based on 
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the binary classification to enhance our 

prediction rate. Our model is trained on the 

latest and large time aware samples of 

malware collected within recent years 

including the latest Android API level than 

state-ofthe-art approaches. 

 

Advantages 

➢ The proposed system chooses the 

characteristics based on their capability 

to display all data sets. Enhanced 

efficiency by reducing the dataset size 

and the hours wasted on the 

classification process introduces an 

effective function selection process. 

 

➢ The system used in this study also 

incorporates larger feature sets for 

classification. Although this problem 

arises in machine learning quite often 

to some extent choosing thetype of 

model for detection or classification 

can highly impact the high 

dimensionality of the data being used. 

 

4. OUTOUT SCREENS 
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5. CONCLUSION 

In this research, we devised a framework 

that can detect malicious Android 

applications. The proposed technique takes 

into account various elements of machine 

learning and achieves a 96.24% in 

identifying malicious Android 

applications. We first define and pick 

functions to capture and analyze Android 

apps' behavior, leveraging reverse 

application engineering and AndroGuard 

to extract features into binary vectors and 

then use python build modules and split 

shuffle functions to train the model with 

benign and malicious datasets. Our 

experimental findings show that our 

suggested model has a false positive rate 

of 0.3 with 96% accuracy in the given 

environment with an enhanced and larger 

feature and sample sets. The study also 

discovered that when dealing with 

classifications and high-dimensional data, 

ensemble and strong learner algorithms 

perform comparatively better. The 

suggested approach is restricted in terms of 

static analysis, lacks sustainability 

concerns, and fails to address a key multi 

collinearity barrier. In the future, we'll 

consider model resilience in terms of 

enhanced and dynamic features. The issue 

of dependent variables or high inter 

correlation between machine algorithms 

before employing them is also a promising 

field. 
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