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Abstract— When it comes to near-surface exploration, 

finding unexploded ordnance, and other applications that rely on 

geomagnetic data, the accuracy and reliability of such data are 

key considerations. Based on machine learning methods, this 

research proposes a geomagnetic data reconstruction method for 

undersampled geomagnetic data. When compared to the 

conventional linear interpolation methods, the suggested 

methodology is more time efficient and lower in labour cost. The 

support vector machine, random forests, and gradient boosting 

models were all developed in this study. Recurrent neural 

network, a deep learning method, was also used to boost training 

performance. A continuous regression hyperplane was generated 

from a training dataset using the suggested learning methods. 

Using the provided regression hyperplane, the relationship 

between the mock-up missing data and the rest of the data is 

mapped out. Finally, the hyperplanes that were trained were 

utilised to rebuild the missing geomagnetic traces for validation, 

and they may be used to reconstruct further gathered fresh field 

data. In the end, numerical experiments were developed. When 

compared to the standard linear technique, our methods 

produced better results, with a reconstruction accuracy that was 

improved by 10% to 20%. 

Index Terms— Modeling and reconstruction using a deep neural 

network with geomagnetic data 

INTRODUCTION 

At magnetic observations, continuous measurements 

of the geomagnetic field are made with a typical time 

period ranging from seconds to decades. It is possible 

that the reliability of geomagnetic data is not always 

guaranteed, particularly in the event of system errors 

[2]. If the data are under- or missing-sampled, the 

accuracy of the interpretation of the geomagnetic data 

is jeopardised [3], necessitating work on data 

reconstruction. Numerous approaches for 

reconstructing geomagnetic data have been devised 

to this point. [4] and [5] used numerical simulations 

to examine the data assimilation approach to try to 

forecast unknown geomagnetic field changes. 

Despite the positive outcomes of the simulation, the 

results remained in theoretical simulation form and 

had not yet been applied to a real-world situation. 

Verification of the performance is still pending. 

Other techniques have been used in real-world 

situations. For the assessment and observation of 

changes in the geomagnetic field, many models of 

global geomagnetic data have been suggested in [6–

9], and their predictions (e.g., CALS3K) may be used 

as a baseline. The spherical harmonic approach [11] 

and multiple model fusion [12] are both well 

established methods. Good reconstruction results 

from these approaches, on the other hand, are 

contingent on a number of assumptions. There should 

be a restricted number of linear events in 

geomagnetic records, for example; in addition, 

reconstructed data should be sparser than the actual 

data with missing traces. Nondestructive testing [13], 

objective detection [14], and classification and linear 

regression [15] are some of the scientific domains 

where machine learning is rapidly being employed 

because it can automatically investigate the hidden 

characteristics or correlations in the data set. In many 

sectors, this is a viable solution to reducing the 

amount of physical labour required. Linear regression 

[16], decision trees [17], support vector machine 

(SVM) [18], artificial neural networks [19], and 

instance-based learning [20] are the basic machine 

learning technologies. Regression, classification, 

clustering, and other models are some of the most 

common ones conducted by machine learning. To 

summarise, this is an excellent product because of its 

high quality.
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Machine learning has spread rapidly across multiple 

fields, suggesting that it is likely to lead the next 

wave of innovation in geophysics [21]. The proposed 

geomagnetic data reconstruction framework includes 

four main modules: data set building, classic machine 

learning regression, RNN regression, and the selected 

model for regression and reconstruction performance. 

How can we use machine learning to analyse 

geomagnetic data? Despite the above-mentioned 

uses, geomagnetic exploration is still in need of 

enhancement. Techniques comparable to this have 

been used to characterise reservoir properties at the 

preliminary stage[22], [23]. Reconstructing or 

interpolating geomagnetic data may be seen of as a 

regression issue for continuous output. An 

approximation function (a continuous hyperplane) 

may be generated using machine learning to recreate 

the missing traces. The three primary phases of the 

suggested technique are as follows: The process of 

creating a training data set is the initial stage. 

Because there are no missing traces in the training 

data, the model built from it is simply a mapping 

from the prior values, x(t), to the new values, x(t + 1). 

Training, validation, and testing data are randomly 

divided from the data set. A regression model (classic 

and RNN) is then trained on the training data to fit a 

hyperplane. Finally, the geomagnetic traces of the 

mock-up defective data set must be reconstructed. 

Validation and testing of the rebuilt data follows, and 

the most optimistic model is determined based on the 

precision of the results. Only the original data 

features are used in the proposed machine learning 

technique to address some of the disadvantages of 

linear events and sparsity of reconstruction data, for 

example. Aside from breaking the prior limits, this 

also demonstrates a greater capacity to adapt to 

diverse types of data sets. Using this technology, 

scientists can get all of Earth's magnetic field 

information for near-surface exploration and 

identification of magnetic minerals. 

THEORY 

Machine learning approaches have not yet been 

employed to recover the geomagnetic data that has 

been undersampled. Algorithms 1 and 2 provide a 

high-level overview of the training and inference 

algorithms in the Geomagnetic Data Reconstruction 

(GDR) framework, which is based on machine 

learning. Figure 1 depicts the framework's four 

components: 2) classic machine learning regression 

module, which is used to extract pattern 

representations from time series data and establish 

deterministic models (refer to Algorithm 1); 3) 

recurrent neural network (RNN) regression module, 

which manipulates data from time series and is 

utilised for the generation of candidate memory 

models (refer to Algorithm 1); 4) neural network 

(RNN) regression model (refer to Figure 5) 

Reconstruction of geomagnetic data may be regarded 

as a regression issue from the standpoint of statistics. 

In the following descriptions, the rationale of 

regression is discussed. Let's assume that the training 

data set contains n pairs of data as xi, yi, where xi is 

the feature vector for each pair of data. In a feature 

vector, the values of the points around a target 

sample point are stored as an array of data. When 

testing or reconstructing, the value of the target 

sample point is derived from the feature vector. The 

associated label for xi is yi (the real value of the 

sample point), which is used to compare with the 

computed target sample point value to arrive at an 

accuracy. It's important to keep in mind that yi is a 

non-negative integer. F (x) must be constructed as an 

approximation of f (x) in order to solve regression 

problems. The dependent variable yi should be 

predicted from the independent variable xi. If there 

are missing geomagnetic data traces, they are used as 

input into the model training process as part of the 

vector xi. Because of this, the uncompleted magnetic 

field strength is used to determine the "ground truth" 

value of yi. 

Classic Machine Learning Methods 

The regression issue was solved using SVM, gradient 

boosting, and random forests, three standard machine 

learning models. The following is a succinct 

description of each model. a) Vector machine: b) 

vector machine In terms of its regression method, 

SVM incorporates all the essential traits that define 

the maximum margin algorithm, despite its origins as 

a classification system that maximises the margin of 

decision boundary: It is possible to train a nonlinear 

function using a linear learning machine that maps it 

into high-dimensional kernel induced feature space. 

The system's capacity is determined by parameters 

that are independent of the feature space's dimension. 

Using a fixed mapping strategy, the SVM regression 

model first maps the input variables x = [x1], [x2], 

[x3], [x4], [x5] into an n-dimensional space. This n-

dimensional space is then used to build a linear 

regression model [18]. For this reason, gi(x) stands 

for a collection of nonlinear transformations, and the 

anticipated "bias" value, yi, may be expressed using 

mathematical notation as: SVM regression employs a 

loss function that is -insensitive for training purposes. 

In [24], you'll find more information. It is possible to 

create an ensemble regression model using numerous 

weak models using gradient boosting [26]. 
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Additionally, it builds up new models in a forward-

looking manner, optimising the differential of loss 

functions Approximation function f (x) mapping x to 

y is obtained using a training sample (xi, yi)n 1 of 

known (x, y) values. The loss function L(y, f (x)) is 

also minimised across the joint distribution of (x, y) 

values. A variety of common loss functions are used 

depending on the kind of issue being addressed, 

including the squared-error L(y, f (x)) and the 

absolute error |y f (x)|. The loss function in this study 

is the squared-error function. A regression tree is 

fitted to the negative gradient in each training step for 

a specified loss function. As a result, the 

approximation value may be anticipated using the 

vector of x with known values and matching values 

of the vector of y. A weighted sum of the function 

hi(x) may be approximated in the regression model of 

gradient boosting, which is known as base learners 

[26]. 

 

A separate optimum multiplier, L(yi, f (xi) + ), may 

be found via line search [27]. It is a well-known 

machine learning technique that is built using a large 

number of decision trees. A regression model's 

projected value isn't dependent on any one tree's 

predictions, but rather on the average of all of the 

trees' predictions. Overfitting may be avoided by 

using a large number of decision trees. It's also 

possible to increase the accuracy of the forecasted 

value. When training a random forest model, the 

same bagging procedures are used for all tree learners 

[28]. Given a training variable called x1 and the 

ground truth called y1 and y2, the following equation 

may be used:

 

Testing 

In order to choose the best model, trained models are 

applied to geomagnetic data with missing traces and 

the anticipated missing data is obtained. 

Geomagnetic data x with missing traces is applied to 

the trained models, resulting in the predicted missing 

data y, which is evaluated to find the most optimal 

model. 

 

In addition, taking the majority vote of all the 

decision trees can also get the predicted values. The 

main steps in our reconstruction method using classic 

machine learning techniques are given in Algorithm 

1. Once all the following steps have been 

successfully completed, the output f (x) is the 

associative function of each model. In practise, the 

following are the methods for predicting outcomes. 

Enter a new vector of geomagnetic data x with 

missing traces and convert it to a 1-dimensional 

vector. It records changes in the intensity of the 

magnetic field over time. Magnetic field strength 

over time (t) 

In addition, the majority of the decision trees may be 

used to anticipate the values of the trees. Algorithm 1 

outlines the basic phases of our machine learning-

based reconstruction approach. The output 

associative function f (x) of each model will be 
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produced after the following procedures have been 

successfully accomplished. In practise, the following 

processes are used to make predictions. New 

geomagnetic data must be entered and then 

transposed into one-dimensional vectors. It holds the 

values of magnetic field strength that change over 

time.. It is possible to predict the intensity of 

magnetic fields over time using the standard machine 

learning approaches, such as the Gauss-Boltzmann 

method. Assumption: All inputs and outputs are 

assumed to be completely independent of one 

another. But in the reconstruction work, it would be 

beneficial to know the previous values in order to 

forecast the upcoming one. Because RNNs do the 

same job for every time-series vector, the result is 

statistically reliant upon the prior computations, they 

are recurrent. As a result, the values x ti, x ti+1,..., x 

t1 are well-known and may be used consecutively in 

the model function to produce an LSTM when RNNs 

are used. As a result, in addition to x t1, the prior 

inputs have an effect on x t as well. Furthermore, the 

network may be used to forecast the next value xt+1, 

which is generated by x ti, x ti+1, etc. xt and the 

anticipated value xt. The remaining steps may be 

completed iteratively in the same way. The more 

values that are already known, the more accurate it is 

to forecast new values.Deep 

4 model = Sequential() 5 model.add (LST M(hi dden 

layer, input_shape = 6 (vi siblelayer,look_back))) 7 

model. fit(x, y, epochs = 100) 8 The input vi sible 

layer is set as 1 while the hi dden layer contains 10 

LSTM blocks. The out put layer makes value 

predictions based on the look_back, which it 

defaulted to 1; epochs stands for the number of 

overall times for the training vectors; 9 Fit all pairs of 

(xt , xt+1) to the network, which is trained for a 

epochs of 100. 10 Testing: 11 Input the missing 

geomagnetic data x to the trained LSTM network to 

obtain the predicted missing data y  

 

LSTM RNN architecture is shown in Fig. 4. 

The point pairs (variable x and ground truth y) with 

completed data are known for the training 

geomagnetic data in Algorithms 1 and 2, and the 

GDR framework paired with our algorithms is 

utilised to develop a best practise regression model y 

= f (x) concealed in these training point pairs. After 

feeding x into this trained model, it is possible to 

estimate the value of y, the other missing data in (x, 

y). We used examples of geomorphological structures 

that were comparable to the geomagnetic data 

recreated in the training phase. To train each of the 

regression models (SVM, Gradient Boosting, 

Random Forests, and LSTM), we input the training 

data into the database. Then, four continuous 

regression models may be constructed, and they can 

also be preserved for future usage in the form of 

reconstruction. It is possible to make educated 

guesses about the missing geomagnetic data at this 

level by looking at the data that has come before or 

after it in the timeline. The regression model is run 

with all of x's missing values.

 

Fig. 5. Procedure of preprocess geomagnetic time-

series data 

that have been trained in the previous stage, thus 

allowing us to obtain the missing geomagnetic data 

 

EXPERIMENTAL RESULTS AND 

DISCUSSION 

 

First, a data set is built; next, the regression model is 

trained; then the missing geomagnetic traces are 

recovered, and finally, the model is tested using fresh 

data sets to verify the findings. R-squared [39] and 

RMSE [39] were both utilised to assess the accuracy 

of various modelling approaches in each experiment. 
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Equations like these [13] are used in their work.

 

There is a difference between R-squared and RMSE. 

The smaller the RMSE, the more accurate the model 

is. R-squared has a range of zero to one, and the 

closer to one it is, the better the model is at 

predicting. Using Python scikit-learn and Keras on an 

Intel Core i7 with a 3.2GHz clock speed and 16GB of 

random access memory, the experiments and 

numerical analysis were carried out (RAM). 

A. Geomagnetic Data 

Preprocessing 

For using machine learning models in geomagnetic 

data reconstruction, it is necessary to include a rule to 

transform the geomagnetic data into the form of data 

pairs (feature, ground truth), which should be suitable 

for the input of each model. The overall data 

preprocessing flowchart of our proposed method is 

shown in Fig. 5. Typically, for a set of 2-D data, first, 

the input variables x = {x1, x2,..., xt} whose t 

subscript indicates the order of the data collected. 

The values in it are the magnetic field strength values 

varying with respect to time. Then, x can be 

transposed into a 1-D column vector [x1, x2,..., xt] T 

directly 

 

 

 

Fig. 6. Flowchart of training a regression model 

There are two spatial dimensions I and j) in 3-D, 

which necessitates a different approach to creating 

the database than in 2-D. Each magnetic field 

strength at each place is represented by a sequential 

pixel along the time axis, whereas I and j are each the 

number of pixels along the row and column, 

respectively. The original data may be depicted as a 

series of photographs. For example, the input 

variables in this situation may be summarised as 

follows: the first two variables are x11 (the first one), 

and the second one (the second one), and the third 

one (the third one). It begins by reshaping 3-D 

sequential information in multiple 1-D vectors. A 1-

D column vector ([x11, x12,...]) T is then produced 

by taking the 1-D space (x11–xij) and sorting it. 

Reshaped data is thus an ensemble of pixels from the 

original dataset. The width I times the height j of the 

picture is used to calculate the number of samples. A 

two- or three-dimensional geomagnetic data set is 

then transformed into an array, with each element 

representing one location's measured magnetic field 

strength (measured in Bt units), and each element 

representing the location's measured magnetic field 

strength (measured in Bt+1 units). An array is a 

collection of related data values. Additional emphasis 

should be placed on one important point: the 

geomagnetic data have their own database B (training 

separately) based on their own time sequence during 

measurement. 
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B. Training Model 

For reconstruction of missing geomagnetic traces, we 

utilized three classic machine learning models and 

one typ 

 

Fig. 7 shows the 2-D field geomagnetic data used for 

the experiment. Geomagnetic field data from the 

original 2-D model. data with 30 percent normal 

missing traces in decimated form 

Data instances with multiple labels may be learned 

from using a deep learning model. Machine learning 

models assigned the occurrences of a certain event 

the label of input variables. The four regression 

models stated before were applied and tested in order 

to obtain the best relative optimist model. These 

trained models were also subjected to a slew of 

comparative studies including various geomagnetic 

data sets. Table I summarises all parameter 

definitions for each Python-based machine learning 

model. 1) Preparation: When it comes to machine 

learning, training is the most important step. For the 

purpose of selecting the intrinsic parameters of the 

regression model, 70% of the geomagnetic data set 

was utilised to train the model's input variables. 

Cross-validation was allocated for 15% of the 

geomagnetic data, and performance testing was 

reserved for another 15%.
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Fig. 8. Six 2-D field geomagnetic data used to feed 

into the training model. (a) 1st dataset. (b) 2nd 

dataset. (c) 3rd dataset. (d) 4th dataset. (e) 5th 

dataset. (f) 6th dataset. 

 

each one of them. Machine learning methods may be 

used to understand the relationship between the 

missing and finished traces in this training data set. 

The values of the missing traces might then be 

predicted using a trained model. 2) Validation: A 

cross validation was used to remove the overfitting 

issue once the model training was completed using 

the training data set. According to the previous 

paragraph, 15% of the geomagnetic data set was 

utilised as the validation dataset. By cross-validating 

each trained model with this dataset, the effectiveness 

of the model can be observed. Parameters should be 

tweaked to enhance the models' performance on the 

validation dataset if the performance of the trained 

models is not satisfactory. Following this step, each 

of the trained models was retrained, as well, and the 

revalidations were implemented on the same data sets 

as the retrained models, respectively As soon as the 

machine learning models attained a satisfactory level 
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of performance, this validation procedure would be 

terminated. 3) Testing: All of the regression models 

previously described could be acquired when training 

and validation were complete. As a result, the testing 

data set was put to use to assess each model's overall 

performance. Testing was allowed on 15% of the 

geomagnetic data. This is an honest and efficient 

evaluation since the testing results were never 

utilised.

 

Fig. 10. 3-D field geomagnetic data for test. (a) 

Original 3-D field geomagnetic data. (b) Decimated 

data with 50% regular missing traces. 

should be fed into each of the trained machine 

learning models for reconstruction and subsequent 

interpolation.C. 2-D Example A 2-D completed field 

geomagnetic data are shown in Fig. 7(a), which is a 

subset of the data set that was 

 

 

 

 



       ISSN 2347–3657 

    Volume 12, Issue 1, 2024 

  
 
 
 

648 
 

 CONCLUSION 

Both machine learning and deep learning were used 

in this research to reconstruct geomagnetic data. 

There is a hidden connection (continuous hyperplane) 

that may be discovered given sufficient example 

training sets. To enhance the performance of classical 

machine learning, we introduce the RNN approach 

(SVM, gradient boosting, and random forests). 

Another benefit is its universal applicability to a 

variety of data sets, which we were able to avoid with 

the past shortcomings of the current reconstruction 

approaches. It is also possible to save the trained 

regression model in order to utilise it in the future to 

recreate the geomagnetic data with a similar 

geomorphological pattern. Overall, the testing 

findings revealed that the suggested approach was 

able to obtain a reconstruction accuracy of more than 

90%, which was an improvement of nearly 20% over 

the conventional method. While deep learning 

approaches exhibited a high degree of accuracy, For 

geomagnetic data reconstruction, we used both 

machine learning and deep learning techniques. 

Using sufficient exemplary training sets, a hidden 

connection (continuous hyperplane) may be 

discovered, and the missing data can be extrapolated 

from this. The RNN approach is presented here to 

enhance the performance of the classical machine 

learning method (SVM, gradient boosting, and 

random forests). It is worth noting that the LSTM-

based methodology was able to bypass past 

shortcomings in current reconstruction approaches, 

and it can be used to a wide variety of data sets. It is 

also possible to save the trained regression model in 

order to reassemble geomagnetic data with a 

comparable geomorphological structure in the future. 

It was shown that the suggested approach can achieve 

a reconstruction accuracy of more than 90%, which is 

a 20% improvement over the previous method in 

terms of the accuracy. The accuracy of deep learning 

algorithms was shown, although it still has room for 

improvement. 
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