

 ISSN 2347–3657
 Volume 12 , Issue 1, Mar 2024

162

CROSS SITE REQUEST FORGERY DETECTION USING MACHINE

LEARNING

KONCHA HARSHITHA*1, R. V. SUBBAIAH*2, GOUTHAMA VENKATA SAI NIKITHA*3,

MAGULURI SUMA MADHURI*4, SHAIK MAHAMMAD BIN ALI*5

* 1,3,4,5 B. Tech Students, *2 Associate Professor

Dept. of Computer Science and Engineering,

RISE Krishna Sai Prakasam Group of Institutions

ABSTRACT:

In this project, we propose a methodology to

leverage Machine Learning (ML) for the

detection of web application vulnerabilities.

Web applications are particularly challenging to

analyses, due to their diversity and the

widespread adoption of custom programming

practices. ML is thus very helpful for web

application security: it can take advantage of

manually labeled data to bring the human

understanding of the web application semantics

into automated analysis tools. We use our

methodology in the design of Mitch, the first

ML solution for the black-box detection of

Cross-Site Request Forgery (CSRF)

vulnerabilities. Mitch allowed us to identify 35

new CSRFs on 20 major websites and 3 new

CSRFs on production software.

I. INTRODUCTION

Web applications are the most common interface

to security sensitive data and functionality

available nowadays. They are routinely used to

file tax incomes, access the results of medical

screenings, perform financial transactions, and

share opinions with our circle of friends, just to

mention a few popular use cases. On the

downside, this means that web applications are

appealing targets to malicious users (attackers)

who are determined to force economic losses,

unduly access confidential data or create

embarrassment to their victims. Securing web

applications is well known to be hard.

There are several reasons for this, ranging from

the heterogeneity and complexity of the web

platform to the adoption of undisciplined

scripting languages offering dubious security

guarantees and not amenable for static analysis.

In such a setting, black-box vulnerability

detection methods are particularly popular. As

opposed to white-box techniques which require

access to the web application source code,

black-box methods operate at the level of HTTP

traffic, i.e., HTTP requests and responses.

Though this limited perspective might miss

important insights, it has the key advantage of

offering a language-agnostic vulnerability

detection approach, which abstracts from the

complexity of scripting languages and offers a

uniform interface to the widest possible range of

web applications. This sounds appealing, yet

previous work showed that such an analysis is

far from trivial. One of the main challenges there

is how to expose to automated tools a critical

ingredient of effective vulnerability detection,

i.e., an understanding of the web application

semantics. Example: Cross-Site Request Forgery

(CSRF) Cross-Site Request Forgery (CSRF) is a

well-known web attack that forces a user into

submitting unwanted, attacker controlled HTTP

requests towards a vulnerable web application in

which she is currently authenticated. The key

concept of CSRF is that the malicious requests

are routed to the web application through the

user’s browser, hence they might be

 ISSN 2347–3657
 Volume 12 , Issue 1, Mar 2024

163

indistinguishable from intended benign requests

which were actually authorized by the user.

A typical CSRF attack works as follows:

1) Alice logs into an honest yet vulnerable web

application, e.g., her preferred social network.

Session authentication is implemented through a

session cookie that is automatically attached by

the browser to any subsequent request towards

the web application;

2) Alice opens another tab and visits an

unrelated website, e.g., a newspaper website,

which returns a web page including malicious

advertisement;

3) The malicious advertisement sends a cross-

site request to the social network using HTML

or JavaScript, e.g., asking to “like” a given

political party.

Since the request includes Alice’s cookies, it is

processed in her authentication context at the

social network. This way, the malicious

advertisement can force Alice into putting a

“like” to the desired political party, which might

skew the result of online surveys.

Notice that CSRF does not require the attacker

to intercept or modify user’s requests and

responses: it suffices that the Preventing CSRF

To prevent CSRF, web developers have to

implement explicit protection mechanisms. If

adding extra user interaction does not affect

usability too much, it is possible to force re-

authentication or use one-time passwords /

CAPTCHAs to prevent cross-site requests going

through unnoticed. In many cases, however,

automated prevention is preferred: the recently

introduced SameSite cookie attribute can be

used to prevent cookie attachment on cross-site

requests, which solves the root cause of CSRF

and is highly recommended for new web

applications. Unfortunately, this defense is not

yet widespread and existing web applications

typically filter out cross-site request by using

any of the following techniques:

1) checking the value of standard HTTP request

headers such as Referrer and Origin, indicating

the page originating the request;

2) checking the presence of custom HTTP

request headers like X-Requested-With, which

cannot be set from a cross-site position;

3) checking the presence of unpredictable anti-

CSRF tokens,set by the server into sensitive

forms.

A recent paper discusses the pros and cons of

these different solutions. However, all three

options suffer from the same limitation: they

require a careful and fine-grained placement of

security checks. For example, tokens should be

attached to all and only the security-sensitive

HTTP requests, so as to ensure complete

protection without harming the user experience.

Using a token to protect a “like” button is useful

to prevent the attack discussed above, yet having

a token on the social network homepage is

undesirable, because it might lead to rejecting

legitimate cross-site requests, e.g., from clicks

on the results of a search engine indexing the

social network. In the end, finding the “optimal”

placement of anti-CSRF defenses is typically a

daunting task for web developers. Modern web

application development frameworks provide

Automated support for this, yet CSRF

vulnerabilities are still routinely found even in

top-ranked websites. This motivates the need for

effective CSRF detection tools. But how can we

provide automated tool support for CSRF

detection if we have no mechanized way to

detect which HTTP requests are actually

security-sensitive.are passed - No splits.

This work presents the most current and

comprehensive understanding of a not very well

understood web vulnerability known as the

CSRF (Cross-Site Request Forgery) and

provides specific solutions to identify and

defend CSRF vulnerabilities. The immediate

benefits of this work include tangible and

 ISSN 2347–3657
 Volume 12 , Issue 1, Mar 2024

164

pragmatic application framework for use by

individuals, organizations and developers, either

as consumers or providers of web services. This

work responds directly to the challenges of

keeping pace with the evolving cyber

technologies and vulnerabilities that increasingly

expose businesses towards privacy and identity

theft specific attacks, where the traditional anti-

virus and anti-spyware approaches fail. The

urgency to come up with appropriate detection

and defensemechanism against the lethal CSRF

attacks is indicated due to expanding cloud

based technologies, HTML5, Semantic Web,

and various emerging security frameworks

comprised of inchoate vestigial of “Big Data”

that demand exceedingly evolved defense

mechanisms. A methodical approach is used to

investigate CSRF attacks and remedies are

proposed by introducing a novel distinctive set

of algorithms that use intelligent assumptions to

detect and defend CSRF. In this work, design

details of a CSRF Detection Model (CDM),

implantation and experimentation results of

CDM are elaborated to detect, predict and

provide solutions for CSRF attacks on

contemporary Web Applications and Web

Services environment. Additionally, CDM based

recommendations for users and providers of

cyber security products and services are

presented. Cross-Site Request Forgery (CSRF)

attack causes actions on a web application

without the knowledge of the user in an

authenticated browser session. CSRF attacks

specifically target state-changing requests like

transferring funds, changing email address, and

so forth. If the victim is an administrative

account, CSRF can compromise the entire web

application. CSRF, also known as the Sleeping

Giant, was considered to be one of the top 5 web

vulnerabilities only 4 years ago. Even so, at least

270 incidents of CSRF attacks have been

reported as of 2016. Not much has improved in

terms of new CSRF solutions since the CSRF

problem appeared in the horizon in 2010. Cross-

Site Reference Forgery (CSRF) and Cross-Site

Scripting (XSS) vulnerabilities have received

much attention recently. An XSS attack, one of

the top 3 current cyber security challenges,

occurs when an attacker injects malicious code

(typically JavaScript), including a CSRF attack

code, into a site for the purpose of targeting

users of the site, e.g., sites that allow posting

comments. According to the Open Web

Application Security Project (OWASP), an open

web community dedicated to address cyber

security challenges, CSRF is one of the top eight

cyber security vulnerabilities in the world,

today. While CSRF attacks are simple to create

and exploit, amazingly, they are difficult to

identify and mitigate.

A search for “Cross Site Scripting” (which

differs from CSRF) on the ACM Digital Library

returned 117 papers, while a search for “CSRF”

returned only four papers. A search for “XSS”

on Safari Books Online (a collection of over

5000 books on technology) showed the term

appeared in 96 books, while “CSRF OR XSRF”

appeared in only 13 books. Very few CSRF

solutions are developed and implemented. Even

so, while current solutions still lack common

applicability all the pieces for large scale

massive CSRF attacks are already in place [53].

This state of the current relentless CSRF attacks

and meager defenses dynamics is the primary

motivation for undertaking this study.

II. LITERATURE SURVEY

1) Surviving The Web: A Journey Into Web

Session Security

 AUTHORS: Stefano Calzavara, Riccardo

Focardi, Marco Squarcina, and Mauro

Tempesta

The Web is the primary access point to on-line

data and applications. It is extremely complex

and variegate, as it integrates a multitude of

dynamic contents by different parties to deliver

the greatest possible user experience. This

 ISSN 2347–3657
 Volume 12 , Issue 1, Mar 2024

165

heterogeneity makes it very hard to effectively

enforce security, since putting in place novel

security mechanisms typically prevents existing

websites from working correctly or negatively

affects the user experience, which is generally

regarded as unacceptable, given the massive user

base of the Web However, this continuous quest

for usability and backward compatibility had a

subtle effect on web security research: designers

of new defensive mechanisms have been

extremely cautious and the large majority of

their proposals consists of very local patches

against very specific attacks. This piecemeal

evolution hindered a deep understanding of

many subtle vulnerabilities and problems, as

testified by the proliferation of different threat

models against which different proposals have

been evaluated, occasionally with quite diverse

underlying assumptions. It is easy to get lost

among the multitude of proposed solutions and

almost impossible to understand the relative

benefits and drawbacks of each single proposal

without a full picture of the existing literature. In

this work, we take the delicate task of

performing a systematic overview of a large

class of common attacks targeting the current

Web and the corresponding security solutions

proposed so far. We focus on attacks against

web sessions, i.e., attacks which target honest

web browser users establishing an authenticated

session with a trusted web application. This kind

of attacks exploits the intrinsic complexity of the

Web by tampering, e.g., with dynamic contents,

client-side storage or cross-domain links, so as

to corrupt the browser activity and/or network

communication. Our choice is motivated by the

fact that attacks against web sessions cover a

very relevant subset of serious web security

incidents and many different defenses, operating

at different levels, have been proposed to

prevent these attacks.

We consider typical attacks against web sessions

and we systematise them based on: (i) their

attacker model and (ii) the security properties

they break. This first classification is useful to

understand precisely which intended security

properties of a web session can be violated by a

certain attack and how. We then survey existing

security solutions and mechanisms that prevent

or mitigate the different attacks and we evaluate

each proposal with respect to the security

guarantees it provides. When security is

guaranteed only under certain assumptions, we

make these assumptions explicit. For each

security solution, we also evaluate its impact on

both compatibility and usability, as well as its

ease of deployment. These are important criteria

to judge the practicality of a certain solution and

they are useful to understand to which extent

each solution, in its current state, may be

amenable for a large-scale adoption on the Web.

Moreover, since there are several proposals in

the literature which aim at providing robust

safeguards against multiple attacks, we also

provide an overview of them. For each of these

proposals, we discuss which attacks it prevents

with respect to the attacker model considered in

its original design and we assess its adequacy

according to the criteria described above.

2) Large-Scale Analysis & Detection Of

Authentication Cross-Site Request Forgeries

AUTHORS: Avinash Sudhodanan, Roberto

Carbone, Luca Compagna, Nicolas Dolgin,

Alessandro Armando, and Umberto Morelli

Cross-Site Request Forgery (CSRF) attacks are

one of the critical threats to web applications. In

this paper, we focus on CSRF attacks targeting

web sites' authentication and identity

management functionalities. We will refer to

them collectively as Authentication CSRF

(Auth-CSRF in short). We started by collecting

several Auth-CSRF attacks reported in the

literature, then analyzed their underlying

strategies and identified 7 security testing

strategies that can help a manual tester uncover

 ISSN 2347–3657
 Volume 12 , Issue 1, Mar 2024

166

vulnerabilities enabling Auth-CSRF. In order to

check the effectiveness of our testing strategies

and to estimate the incidence of Auth-CSRF, we

conducted an experimental analysis considering

300 web sites belonging to 3 different rank

ranges of the Alexa global top 1500. The results

of our experiments are alarming: out of the 300

web sites we considered, 133 qualified for

conducting our experiments and 90 of these

suffered from at least one vulnerability enabling

Auth-CSRF (i.e. 68%). We further generalized

our testing strategies, enhanced them with the

knowledge we acquired during our experiments

and implemented them as an extension (namely

CSRF-checker) to the open-source penetration

testing tool OWASP ZAP. With the help of

CSRFchecker, we tested 132 additional web

sites (again from the Alexa global top 1500) and

identified 95 vulnerable ones (i.e. 72%). Our

findings include serious vulnerabilities among

the web sites of Microsoft, Google, eBay etc.

Finally, we responsibly disclosed our findings to

the affected vendors.

3) State Of The Art: Automated Black-Box

Web Application Vulnerability Testing

AUTHORS : Jason Bau, Elie Bursztein, Divij

Gupta, and John C. Mitchell

Black-box web application vulnerability

scanners are automated tools that probe web

applications for security vulnerabilities. In order

to assess the current state of the art, we obtained

access to eight leading tools and carried out a

study of: (i) the class of vulnerabilities tested by

these scanners, (ii) their effectiveness against

target vulnerabilities, and (iii) the relevance of

the target vulnerabilities to vulnerabilities found

in the wild. To conduct our study we used a

custom web application vulnerable to known

and projected vulnerabilities, and previous

versions of widely used web applications

containing known vulnerabilities. Our results

show the promise and effectiveness of

automated tools, as a group, and also some

limitations. In particular, "stored" forms of

Cross Site Scripting (XSS) and SQL Injection

(SQLI) vulnerabilities are not currently found by

many tools. Because our goal is to assess the

potential of future research, not to evaluate

specific vendors, we do not report comparative

data or make any recommendations about

purchase of specific tools.

4) Why johnny can’t pentest: An analysis of

black-box web vulnerability scanners

AUTHORS : Adam Doup´e, Marco Cova,

and Giovanni Vigna

 Black-box web vulnerability scanners are a

class of tools that can be used to identify

security issues in web applications. These tools

are often marketed as “point-and-click

pentesting” tools that automatically evaluate the

security of web applications with little or no

human support. These tools access a web

application in the same way users do, and,

therefore, have the advantage of being

independent of the particular technology used to

implement the web application. However, these

tools need to be able to access and test the

application’s various components, which are

often hidden behind forms, JavaScript-generated

links, and Flash applications. This paper

presents an evaluation of eleven black-box web

vulnerability scanners, both commercial and

open-source. The evaluation composes different

types of vulnerabilities with different challenges

to the crawling capabilities of the tools. These

tests are integrated in a realistic web application.

The results of the evaluation show that crawling

is a task that is as critical and challenging to the

overall ability to detect vulnerabilities as the

vulnerability detection techniques themselves,

and that many classes of vulnerabilities are

completely overlooked by these tools, and thus

research is required to improve the automated

detection of these flaws.

5) Mitch: A Machine Learning Approach To

The Blackbox Detection Of Csrf

 ISSN 2347–3657
 Volume 12 , Issue 1, Mar 2024

167

Vulnerabilities AUTHORS: Stefano

Calzavara, Mauro Conti, Riccardo Focardi,

Alvise Rabitti, and Gabriele Tolomei

Cross-Site Request Forgery (CSRF) is one of the

oldest and simplest attacks on the Web, yet it is

still effective on many websites and it can lead

to severe consequences, such as economic losses

and account takeovers. Unfortunately, tools and

techniques proposed so far to identify CSRF

vulnerabilities either need manual reviewing by

human experts or assume the availability of the

source code of the web application. In this paper

we present Mitch, the first machine learning

solution for the black-box detection of CSRF

vulnerabilities. At the core of Mitch there is an

automated detector of sensitive HTTP requests,

i.e., requests which require protection against

CSRF for security reasons. We trained the

detector using supervised learning techniques on

a dataset of 5,828 HTTP requests collected on

popular websites, which we make available to

other security researchers. Our solution

outperforms existing detection heuristics

proposed in the literature, allowing us to identify

35 new CSRF vulnerabilities on 20 major

websites and 3 previously undetected CSRF

vulnerabilities on production software already

analyzed using a state-of-the-art tool.

III. SYSTEM ANALYSIS

SYSTEM ARCHITECTURE:

EXISTING SYSTEM:

In the existing system Securing web applications

is well known to be hard. There are several

reasons for this, ranging from the heterogeneity

and complexity of the web platform to the

adoption of undisciplined scripting languages

offering dubious security guarantees and not

amenable for static analysis. Though this limited

perspective might miss important insights, it has

the key advantage of offering a language-

agnostic vulnerability detection approach, which

abstracts from the complexity of scripting

languages and offers a uniform interface to the

widest possible range of web applications.

 DISADVANTAGES OF EXISTING

SYSTEM:

➢ In white-box techniques which require

access to the web application source

code.

➢ Black-box methods operate at the level

of HTTP traffic, i.e., HTTP requests and

responses.

➢ Algorithm: Burp and ZAP tools

PROPOSED SYSTEM:

Cross-Site Request Forgery (CSRF) is a well-

known web attack that forces a user into

submitting unwanted, attacker controlled HTTP

requests towards a vulnerable web application in

which she is currently authenticated. The key

concept of CSRF is that the malicious requests

are routed to the web application through the

user’s browser, hence they might be

indistinguishable from intended benign requests

which were actually authorized by the user. The

CSRF does not require the attacker to intercept

or modify user’s requests and responses: it

suffices that the victim visits the attacker’s

website, from which the attack is launched.

Thus, CSRF vulnerabilities are exploitable by

any malicious website on the Web.

ADVANTAGES OF PROPOSED SYSTEM:

➢ The value of standard HTTP request

headers such as Referrer and Origin,

indicating the page originating the

request.

➢ The presence of custom HTTP request

headers like X-Requested-With, which

cannot be set from a cross-site position.

➢ The presence of unpredictable anti-

CSRF tokens, set by the server into

sensitive forms.

➢ Algorithm: RandomForestClassifier

 ISSN 2347–3657
 Volume 12 , Issue 1, Mar 2024

168

SYSTEM STUDY

FEASIBILITY STUDY

 The feasibility of the project is analyzed

in this phase and business proposal is put forth

with a very general plan for the project and some

cost estimates. During system analysis the

feasibility study of the proposed system is to be

carried out. This is to ensure that the proposed

system is not a burden to the company. For

feasibility analysis, some understanding of the

major requirements for the system is essential.

Three key considerations involved in the

feasibility analysis are,

• ECONOMICAL FEASIBILITY

• TECHNICAL FEASIBILITY

• SOCIAL FEASIBILITY

ECONOMICAL FEASIBILITY

 This study is carried out to check the economic

impact that the system will have on the

organization. The amount of fund that the

company can pour into the research and

development of the system is limited. The

expenditures must be justified. Thus the

developed system as well within the budget and

this was achieved because most of the

technologies used are freely available. Only the

customized products had to be purchased.

TECHNICAL FEASIBILITY

 This study is carried out to check the

technical feasibility, that is, the technical

requirements of the system. Any system

developed must not have a high demand on the

available technical resources. This will lead to

high demands on the available technical

resources. This will lead to high demands being

placed on the client. The developed system must

have a modest requirement, as only minimal or

null changes are required for implementing this

system.

SOCIAL FEASIBILITY

 The aspect of study is to check the level

of acceptance of the system by the user. This

includes the process of training the user to use

the system efficiently. The user must not feel

threatened by the system, instead must accept it

as a necessity. The level of acceptance by the

users solely depends on the methods that are

employed to educate the user about the system

and to make him familiar with it. His level of

confidence must be raised so that he is also able

to make some constructive criticism, which is

welcomed, as he is the final user of the system.

IV. IMPLEMENTATION:

MODULES DESCRIPTION:

• User

• Admin

• False Positives and False Negatives

• Machine Learning Classifier

MODULES DESCRIPTION:

User:

The User can register the first. While registering

he required a valid user email and mobile for

further communications. Once the user register

then admin can activate the customer. Once

admin activated the customer then user can login

into our system. User can do the data preprocess.

First required running website name. By using

that website the user can test the csrfs. By help

of bolt tool the user can fetch related all csrfs

and generated algorithm names. The result will

be stored in json files. Later the user can get the

results of Mitch dataset. The mitch dataset tested

for POST method as well GET method to. The

result will be displayed on the browser.

Admin:

Admin can login with his credentials. Once he

login he can activate the users. The activated

user only login in our applications. The admin

can set the training and testing data for the

project of the Mitch Dataset. The user search all

urls related csrf token admin can view in his

page. The admin can also check the POST

 ISSN 2347–3657
 Volume 12 , Issue 1, Mar 2024

169

method performed data from the dataset and

GET method related data also.

False Positives and False Negatives:

Mitch produces a false positive when it returns a

candidate CSRF that cannot be actually

exploited. This is something relatively easy to

detect by manual testing, though this process is

tedious and time-consuming. In general, it is not

possible to reliably identify when Mitch

produces a false negative, because this would

require to know all the CSRF vulnerabilities on

the tested websites. To estimate this important

aspect, we keep track of all the sensitive requests

returned by the ML classifier embedded into

Mitch and we focus our manual testing on those

cases. This is a reasonable choice to make the

analysis tractable, because we first showed that

the classifier performs well using standard

validity measures.

Machine Learning Classifier:

The ML classifier used by Mitch was trained

from a dataset of around 6000 HTTP requests

from existing websites, collected and labeled by

two human experts. The feature space X of the

classifier has 49 dimensions, each one capturing

a specific property of HTTP requests. Those can

be organized into following categories.

following set of numerical features:

numOfParams: the total number of parameters;

numOfBools: the number of request parameters

bound to a boolean value;

numOfIds: the number of request parameters

bound to an identifier, i.e., a hexadecimal string,

whose usage was empirically observed to be

common in our dataset;

numOfBlobs: the number of request parameters

bound to a blob, i.e., any string which is not an

identifier;

reqLen: the total number of characters in the

request, including parameter names and values.

V. SCREEN SHOTS;

User Registration Form

User Login Form:

User Home:

Getting website csrfs:

 ISSN 2347–3657
 Volume 12 , Issue 1, Mar 2024

170

Scanning urls:

Further Enhancement

This work provides the most up to date and

comprehensive account of the nature of the

CSRF attacks and corresponding solution to

thwart these attacks. However, as the new

knowledge pioneered in this work takes hold,

the future extensions of this knowledge are

bound to happen. Some areas of further work, in

future, are identified as follows: As a future

extension of this work it may be possible to

perform the Bayesian estimation by using 1-99

(configurable) threshold probability ratio of

suspect CSRF page to safe pages since anything

lower than 1% of the threshold can either be

random or an unexpected variance]

Incorporating routine CSRF scanning in

commercial anti-malware • Browser specific and

generic anti CSRF solutions.

VI. CONCLUSION

Web applications are particularly challenging to

analyse, due to their diversity and the

widespread adoption of custom programming

practices. ML is thus very helpful in the web

setting, because it can take advantage of

manually labeled data to expose the human

understanding of the web application semantics

to automated analysis tools. We validated this

claim by designing Mitch, the first ML solution

for the blackbox detection of CSRF

vulnerabilities, and by experimentally assessing

its effectiveness. We hope other researchers

might take advantage of our methodology for the

detection of other classes of web application

vulnerabilities.

REFERENCES

[1] Stefano Calzavara, Riccardo Focardi, Marco

Squarcina, and Mauro Tempesta. Surviving the

web: A journey into web session security. ACM

Comput. Surv., 50(1):13:1–13:34, 2017.

[2] Avinash Sudhodanan, Roberto Carbone,

Luca Compagna, Nicolas Dolgin, Alessandro

Armando, and Umberto Morelli. Large-scale

analysis & detection of authentication cross-site

request forgeries. In 2017 IEEE European

Symposium on Security and Privacy, EuroS&P

2017, Paris, France, April 26-28, 2017, pages

350–365, 2017.

[3] Stefano Calzavara, Alvise Rabitti, Alessio

Ragazzo, and Michele Bugliesi. Testing for

integrity flaws in web sessions. In Computer

Security - 24rd European Symposium on

Research in Computer Security, ESORICS

2019, Luxembourg, Luxembourg, September

23-27, 2019, pages 606–624, 2019.

[4] OWASP. OWASP Testing Guide.

https://www.owasp.org/index.php/ OWASP

Testing Guide v4 Table of Contents, 2016.

[5] Jason Bau, Elie Bursztein, Divij Gupta, and

John C. Mitchell. State of the art: Automated

black-box web application vulnerability testing.

In 31st IEEE Symposium on Security and

Privacy, S&P 2010, 16-19 May 2010,

Berkeley/Oakland, California, USA, pages 332–

345, 2010.

[6] Adam Doup´e, Marco Cova, and Giovanni

Vigna. Why johnny can’t pentest: An analysis of

black-box web vulnerability scanners. In

Detection of Intrusions and Malware, and

Vulnerability Assessment, 7th International

Conference, DIMVA 2010, Bonn, Germany,

July 8-9, 2010. Proceedings, pages 111–131,

2010.

[7] Adam Barth, Collin Jackson, and John C.

Mitchell. Robust defenses for cross-site request

forgery. In Proceedings of the 2008 ACM

Conference on Computer and Communications

 ISSN 2347–3657
 Volume 12 , Issue 1, Mar 2024

171

Security, CCS 2008, Alexandria, Virginia, USA,

October 27-31, 2008, pages 75–88, 2008.

[8] Mehryar Mohri, Afshin Rostamizadeh, and

Ameet Talwalkar. Foundations of Machine

Learning. The MIT Press, 2012.

[9] Michael W. Kattan, Dennis A. Adams, and

Michael S. Parks. A comparison of machine

learning with human judgment. Journal of

Management Information Systems, 9(4):37–57,

March 1993.

[10] D. A. Ferrucci. Introduction to “This is

Watson”. IBM Journal of Research and

Development, 56(3):235–249, May 2012.

[11] David Silver, Aja Huang, Chris J.

Maddison, Arthur Guez, Laurent Sifre, George

van den Driessche, Julian Schrittwieser, Ioannis

Antonoglou, Veda Panneershelvam, Marc

Lanctot, Sander Dieleman, Dominik Grewe,

John Nham, Nal Kalchbrenner, Ilya Sutskever,

Timothy Lillicrap, Madeleine Leach, Koray

Kavukcuoglu, Thore Graepel, and Demis

Hassabis. Mastering the game of Go with deep

neural networks and tree search. Nature,

529(7587):484–489, Jan 2016.

[12] Michele Bugliesi, Stefano Calzavara,

Riccardo Focardi, and Wilayat Khan. Cookiext:

Patching the browser against session hijacking

attacks. Journal of Computer Security,

23(4):509–537, 2015.

[13] Stefano Calzavara, Gabriele Tolomei,

Andrea Casini, Michele Bugliesi, and Salvatore

Orlando. A supervised learning approach to

protect client authentication on the web. TWEB,

9(3):15:1–15:30, 2015.

[14] Stefano Calzavara, Mauro Conti, Riccardo

Focardi, Alvise Rabitti, and Gabriele Tolomei.

Mitch: A machine learning approach to the

blackbox detection of CSRF vulnerabilities. In

IEEE European Symposium on Security and

Privacy, EuroS&P 2019, Stockholm, Sweden,

June 17-19, 2019, pages 528–543, 2019.

[15] Giancarlo Pellegrino, Martin Johns, Simon

Koch, Michael Backes, and Christian Rossow.

Deemon: Detecting CSRF with dynamic

analysis and property graphs. In Proceedings of

the 2017 ACM SIGSAC Conference on

Computer and Communications Security, CCS

2017, Dallas, TX, USA, October 30 - November

03, 2017, pages 1757–1771, 2017.

