

 ISSN 2347–3657

Volume 1,Issue 1,Feb 2013

AN EFFICIENT MULTIBIT UPSET DETECTION AND CORRECTION IN 64-BIT SRAM

BASED FPGA MEMORY USING DECIMAL MATRIX CODE

Dr. MVS Prasad

Abstract:

In order to safeguard memory against radiation, this study lays forth an effective method for correcting Multiple Bit Upsets (MBUs). The

main problem with the old method of protecting memories from MBUs—which included using several sophisticated error correction codes—

was the increased redundant memory expense.To guarantee memory dependability, this article suggested a 64-bit Matrix Code. In order to

find and fix additional mistakes, the suggested protection code used a process. The results demonstrated a degree of protection against huge

MBUs in memory for the suggested method. One of the most significant issues with the dependability of memory in a radiation environment

is transient multiple bit upsets (MBUs). To repair memory errors, the suggested approach makes use of a 64-bit matrix. More complicated

error correction codes (ECCs) are often used to safeguard memory against MBUs corrupting data, but their primary drawback is the increased

delay overhead they entail. There have been recent proposals for memory protection using matrix codes (MCs) based on Hamming codes.

The fact that they are error correction codes twice is the biggest problem, and not every situation benefits from the expanded mistake correction

capabilities. Also, without affecting the overall encoding and decoding procedures, erasure codes are suggested as a means to lessen the area

overhead of additional circuits. These days, several error detection and repair techniques are used to secure memory bits with protection codes,

which is essential for ensuring a high degree of dependability. More redundant bits are needed to ensure improved memory dependability,

which is the only downside of the present MC. In order to guarantee stability in the face of multiple bit upset, remove unnecessary bits, and

rectify more errors than the present system, the suggested approach employed matrix coding.

Keywords: FPGA, Multiple Bit Upsets, Reliability, Soft Errors

I. INTRODUCTION

The soft error rate in memory cells is growing at a rapid pace

as CMOS technology shrinks to the nanoscale and memories

are integrated with more and more electronic systems. This is

particularly true when memories function in space

environments, subjected to the ionizing effects of atmospheric

neutrons, alpha particles, and cosmic rays. Memory reliability

is greatly affected by single bit upsets, but in some memory

applications, reliability is also greatly affected by

Department of ECE, ANU college of Engineering

and Technology, Guntur, India

multiple cell upsets (MCUs). For a long time, certain error

correction codes (ECCs) have been extensively utilized to

safeguard memories against soft faults, with the goal of

making memory cells as fault-tolerant as feasible. For

instance, memory-related MCUs have been addressed using

codes such as Bose, Chaudhuri, Hocquenghem, Reed-

Solomon, and punctured difference set (PDS). On the other

hand, these codes incur additional space, power, and delay

costs.

 ISSN 2347–3657

Volume 1,Issue 1,Feb 2013

because these intricate codes need more

sophisticated encoding and decoding systems.In

order to accomplish error detection and repair, it

is common practice to include redundant data in

messages. This allows the receiver to verify the

integrity of the message and recover corrupted

data. It is possible to have a systematic or non-

systematic approach to error identification and

correction: In a methodical scheme, the sender

transmits the one-of-a-kind data along with a

predetermined amount of check bits, also called

parity data, that are calculated from the data bits

using a deterministic algorithm. If the receiver's

main concern is with error detection, then all it

needs to do is apply the same method to the data

bits it has received and compare the results to the

receive check bits; if the values don't match, then

an error has happened during transmission.

Lower-layer communication and dependable

storage on media like CDs, DVDs, hard drives,

and RAM both make frequent use of error-

correcting codes.Due to its low cost, high

density, flexibility, and rapid time-to-market,

static RAM based FPGAs are most often

employed in a range of applications. The

configuration data of logic cells is stored in the

static memory of an FPGA that is based on

SRAM, which is structured as a latch array.

Creating intricate digital circuits is a breeze using

FPGA. Using SRAM also lowers power usage.

At high frequencies, static random access

memory (SRAM) may be just as power-hungry

as dynamic random access memory (RAM), and

certain integrated circuits can require several

watts when operating at maximum bandwidth. In

contrast, static RAM requires a tiny amount of

power when not in use (a few micro watts) and

uses even less power while running at a slightly

slower rate, as is the case with applications that

employ moderately clocked microprocessors. To

control how much power SRAM-based memory

architectures use, many methods have been

suggested.Arrays of programmable logic blocks

linked by a programmable routing network and

I/O blocks make up an FPGA device that can be

customized using SRAM. FPGA devices based

on SRAM are gaining popularity because to their

re-programmability, low development cost, and

good performance.FPGAs using denser

integration methods and nanoscale technology.

One of the most common components of

electronic systems is the memory. The efficiency

of a circuit is significantly diminished when

exposed to environmental radiation. A charged

particle in the environment may cause a single-

event upset (SEU) if it strikes a circuit's silicon

and causes an error. Soft mistakes occur when an

FPGA device makes a mistake that compromises

the mapped design's functioning. The hardware

of a system is unaffected by a soft mistake; the

data being processed in memory is the only thing

that gets damaged. One solution to this problem

is the use of Built-in Current Sensors (BICS) in

combination with Single Error

Correction/Double Error Detection (SEC-DED)

codes to safeguard memory against MBUs.

However, only SEU could be fixed using those

procedures. This study presents a general

scrubbing system that uses the idea of the Erasure

coding algorithm to recreate the erroneous

configuration frame. It may be used for both

mistake detection and rectification. This Erasure

coding scheme sorts interleaving distance into

horizontal and vertical parity, which is used to

identify MBUs.

II. Patterns of MBUs

To control MBUs, which physically rearrange

bits to create new words from the same logical

word, the interleaving approach has been used.

The interleaving method, however,may not be

applicable to content-addressable memory

(CAM) due to the close relationship between the

hardware architectures of bits and comparison

circuits.A more recent proposal suggests using 2-

dimensional matrix codes (MCs), which split a

word into many logical columns and rows, to

effectively correct MBUs per word with a short

decoding time. Each column has parity code

applied to it, and the bits per row are secured by

Hamming code. In a Hamming-based MC, the

vertical syndrome bits are turned on to fix the two

mistakes that are discovered by Hamming.

Consequently, MC can only ever fix a maximum

of two mistakes. It has been proposed to

implement a solution at the software level that

integrates algorithmic and Hamming code. To

find and fix subtle mistakes, it adds integer

values. The results demonstrate that this method

outperforms other codes in terms of delay

overhead. To help with single-error correction

and double-error detection codes, built-in current

sensors (BICS) are suggested to provide

protection against MBUs. But this method can

only fix two mistakes per word.To improve

memory reliability, this work proposes a new

matrix code based on the divide-symbol

algorithm. An technique that uses integer

addition and integer subtraction is used to find

flaws in the proposed matrix coding. Using an

algorithm has several benefits, one of which is

improving memory dependability by maximizing

error detection capabilities. Also, without

interfering with the encoding and decoding

procedures, erasure codes are suggested as a way

 ISSN 2347–3657

Volume 1,Issue 1,Feb 2013

to reduce the area overhead of additional circuits.

Fig. 1 Encoding and decoding of erasure codes.

II. PROPOSED DMC

In this section, DMC is proposed to assure reliability

in the presence of MCUs with reduced performance

overheads, and a 64-bit word is encoded and decoded

as an example based on the proposed techniques.

A. Proposed Schematic of Fault-Tolerant Memory:

The schematic of fault-tolerant memory is as shown

in Fig. 2. The DMC encoder is fed with information

bits D, during the encoding (write) process, and then

the DMC encoder produces the vertical redundant

bits V and horizontal redundant bits H. The obtained

DMC code word is stored in the memory, once

encoding process is completed. If the memory is

affected by MCUs, in the decoding (read) process

these errors can be corrected. The proposed DMC has

higher fault- tolerant capability with higher

performance because of decimal algorithm. The

fault-tolerant memory uses ERT technique, to reduce

extra circuit’s area overhead and will be introduced

in the following sections.Proposed DMC Encoder

The DMC proposes, first, it performs the ideas of

divide-symbol and arrange-matrix, i.e. symbols of m

bits (N = k × m) is obtained by dividing the N-bit

word, and these symbols are arranged in a k1 × k2 2-

D matrix (k = k1 × k2,

Fig. 2 Proposed schematic of fault-tolerant

memory protected with DMC

where k1 and k2 values represent thenumbers of rows

and columns in the logical matrix respectively).

Second by decimal integer addition of selected

symbols per row the horizontal redundant bits H are

obtained. Here, each symbol is regarded as a decimal

integer. Third, by binary operation among the bits per

column the vertical redundant bits V are obtained. It

should be noted that instead of in physical both divide-

symbol and arrange-matrix are implemented in

logical. Therefore, the physical structure of the

memory is not required to be changed as according to

the proposed DMC.

We considered a 64-bit word as an example, to explain

the proposed DMC scheme, as shown in Fig. 2. From

D0 to D63 cells are information bits. Eight symbols of

4-bit are obtained by dividing 64-bit word. By

choosing k1 = 2 and k2 = 4 simultaneously. Horizontal

check bits are H0–H39; vertical check bits are V0

through V31 are. However, it should be mentioned

that the number of redundant bits and the maximum

correction capability (i.e., the maximum size of

MCUs can be corrected) are different when values for

k and m are chosen different. Therefore, to maximize

the correction capability and minimize the number of

redundant bits k and m should be carefully adjusted to

maximize the correction capability and minimize the

number of redundant bits. For example, in this case,

when k = 2×2and m = 8, only 1-bit error can be

corrected and the number of redundant bits is 80.

When k = 4 × 4 and m

= 2, 3-bit errors can be corrected and the number of

redundant bits is reduced to 32. However, when k =

2 × 4 and m = 4, the maximum correction capability

is up to 5 bits and the number of redundant bits is 72.

In this paper, in order to enhance the reliability of

memory, the error correction capability is first

 ISSN 2347–3657

Volume 1,Issue 1,Feb 2013

considered, so k = 2 × 8 and m = 4 are utilized to

construct DMC.

The horizontal redundant bits H can be obtained by

decimal integer addition as follows

H4H3H2H1H0 = D3D2D1D0 + D19D18D17D16

(1) H9H8H7H6H5 = D7D6D5D4 +

D23D22D21D20 (2)

and similarly for the horizontal redundant bits

H14H13H12H11H10,

 H19H18H17H16H15

H16, H24H23H22H21H20,

 H29H28H27H26H25,

H34H33H32H31H30 and H39H38H37H36H35

where

“+” represents decimal integer

addition. For the vertical redundant

bits V, we have

V0 = D0 ^ D31 (3)

V1 = D1 ^ D32 (4)

and similarly for the rest vertical redundant bits.

The encoding can be performed by decimal and

binary addition operations from (1) to (4). The

encoder that computes the redundant bits using multi

bit adders and XOR gates is shown in Fig. In this

figure, H39 − H0 are horizontal redundant bits, V31

− V0 are vertical redundant bits, and the remaining

bits U63 − U0 are the information bits which are

directly copied from D31 to D0. The enable signal

En will be explained in the next section.

 Fig 3: 64-bits DMC logical

organization (k = 2 × 8 and m = 4). Here, each

symbol is regarded as a decimal integer
Fig 4: 64-bit DMC encoder structure using

multi bit adders and XOR gates

B. Proposed DMC Decoder

To obtain a word being corrected, the decoding

process is required. For example, first, the received

redundant bits H4H3H2H1H0’ and V0’-V3’ are

generated by the received information bits D’. Second,

the horizontal syndrome bits

∆H4H3H2H1H0 and the vertical syndrome bits S3 −

S0 can be calculated as follows:

∆H4H3H2H1H0 = H4H3H2H1H0’ − H4H3H2H1H0

(5)information bits D’ and compared to the original

set of redundant bits in order to obtain the syndrome

bits

∆H and S. Then error locator uses ∆H and S to detect

and locate which bits some errors occur in. Finally,

in the error corrector, these errors can be corrected by

inverting the values of error bits.

𝑆0 = 𝑉0’^𝑉0 (6)

and similarly for the rest vertical syndrome bits, where

“−” represents decimal integer subtraction. When

∆H4H3H2H1H0 and S3 − S0 are equal to zero, the

stored code word has original information

bits in symbol 0 where no errors occur. When

∆H4H3H2H1H0 and S3 − S0 are nonzero, theinduced

errors (the number of errors is 4 in this case) are

detected and located in symbol 0, and then these errors

can be corrected by

𝐷0𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = 𝐷0 ^ 𝑆0 (7)

The proposed DMC decoder is depicted in Fig, which

is made up of the following sub modules, and each

executes a specific task in the decoding process:

syndrome calculator, error locator, and error corrector.

It can be observed from this figure that the redundant

 ISSN 2347–3657

Volume 1,Issue 1,Feb 2013

bits must be recomputed from the received

Fig 5: 64-bit DMC decoder structure using ERT

Fig 6: limits of binary error detection in simple

binary operations

By recycling its encoder, the suggested method

reduces the DMC's circuit size. This system is

known as the ERT. Without interfering with the

whole encoding and decoding process, the ERT

may lower the DMC area overhead. It is also

possible to acquire the syndrome bits in the DMC

decoder by reusing the DMC encoder, as shown in

Figure. Consequently, by using the existing

encoder circuits, the total circuit size of the DMC

may be decreased. In addition, the suggested

decoder with an enable signal En for determining

whether the encoder is required to be part of the

decoder is also shown in this picture. To rephrase,

the En signal, which is controlled by the write and

read signals in memory, is used to differentiate the

encoder from the decoder. As a result, the DMC

encoder is only an encoder during the write phase

of encoding. Decoding (reading) requires this

encoder, however, since it calculates the syndrome

bits. These examples demonstrate how the area

overhead of additional circuits may be

significantly reduced.

III. RESULT

S Block diagram

RTL Schematic

Technology Schematic

Simulation Results

IV. CONCLUSION

This work introduced DMC as a means to guarantee

memory reliability. More mistakes were found and

fixed since the suggested protection code used a

decimal approach to identify them. The findings

collected suggest that the proposed technique provides

a greater degree of protection against big MCUs in

memory. To maximize memory reliability while

minimizing the number of redundant bits, a reasonable

combination of k and m should be chosen based on

radiation experiments in actual implementation. The

only drawback of the proposed DMC is that more

 ISSN 2347–3657

Volume 1,Issue 1,Feb 2013

redundant bits are required to maintain higher

reliability of memory. So, in order to keep the

suggested approach reliable and reduce the number of

unnecessary bits, further work will be done in the

future

.REFERENCES

[1] Jing Guo, Liyi Xiao, Member, IEEE, Zhigang

Mao, Member, IEEE, and QiangZhao,”Enhanced

memory reliability against multiple cell upsets using

Decimal Matrix Code” IEEE Trans. Very Large

ScaleIntegr. (VLSI) Syst., vol. 22, no. 1, pp.127-135,

Mar 2013.

[2] D. Radaelli, H. Puchner, S. Wong, and S. Daniel,

“Investigation of multi-bit upsets in a 150 nm

technology SRAM device,” IEEE Trans.Nucl. Sci.,

vol. 52, no. 6, pp. 2433–2437, Dec. 2005.

[3] E. Ibe, H. Taniguchi, Y. Yahagi, K. Shimbo, and

T. Toba, “Impact of scaling on neutron induced soft

error in SRAMs from an 250 nm to a 22 nm design

rule,” IEEE Trans. Electron Devices, vol. 57, no. 7,

pp. 1527–1538, Jul. 2010.

[4] C. Argyrides and D. K. Pradhan, “Improved

decoding algorithm for high reliable reed muller

coding,” in Proc. IEEE Int. Syst. On Chip Conf., Sep.

2007, pp. 95–98.

[5] A. Sanchez-Macian, P. Reviriego, and J. A.

Maestro, “Hamming SEC-DAED and extended

hamming SEC-DED-TAED codes through selective

shortening and bit placement,” IEEE Trans. Device

Mater. Rel., to be published.

[6]

[7] S. Liu, P. Reviriego, and J. A. Maestro, “Efficient

majority logic fault detection with difference-set

codes for memory applications,” IEEETrans. Very

Large Scale Integr. (VLSI) Syst., vol. 20, no. 1, pp.

148–156, Jan. 2012.

[8] M. Zhu, L. Y. Xiao, L. L. Song, Y. J. Zhang, and

H. W. Luo, “New mix codes for multiple bit upsets

mitigation in fault-secure memories,” Micro electron.

J., vol. 42, no. 3, pp. 553–561, Mar. 2011.

[9] R. Naseer and J. Draper, “Parallel double error

correcting code design to mitigate multi-bit upsets

inSRAMs,” in Proc. 34th Eur. Solid-State

Circuits, Sep. 2008, pp. 222–225.

[10] G. Neuberger, D. L. Kastensmidt, and R.

Reis, “An automatic technique for optimizing Reed-

Solomon codes to improve fault tolerance in

memories,” IEEE Design Test Comput., vol. 22, no.

1, pp. 50–58, Jan.–Feb. 2005.

[11] P. Reviriego, M. Flanagan, and J. A. Maestro,

“A (64,45) triple error correction code for memory

applications,” IEEE Trans. Device Mater.

Rel., vol. 12, no. 1, pp. 101–106, Mar. 2012.

[12] S. Baeg, S. Wen, and R. Wong, “Interleaving

distance selection with a soft error failure model,”

IEEE Trans. Nucl. Sci., vol. 56, no. 4, pp. 2111–

2118, Aug. 2009.

[13] K. Pagiamtzis and A. Sheikholeslami, “Content

addressable memory (CAM) circuits and

architectures: A tutorial and survey,” IEEE J.Solid-

State Circuits, vol. 41, no. 3, pp. 712–727, Mar.

2003.

[14] D. Radaelli, H. Puchner, S. Wong, and S.

Daniel, “Investigation of multi-bit upsets in a 150 nm

technology SRAM device,” IEEE Trans. Nucl. Sci.,

vol. 52, no. 6, pp. 2433–2437, Dec. 2005.

[15] E. Ibe, H. Taniguchi, Y. Yahagi, K. Shimbo, and

T. Toba, “Impact of scaling on neutron induced soft

error in SRAMs from an 250 nm to a 22 nm design

rule,” IEEE Trans. Electron Devices, vol. 57, no. 7,

pp. 1527–1538, Jul. 2010.

[16] C. Argyrides and D. K. Pradhan, “Improved

decoding algorithm for high reliable reed muller

coding,” in Proc. IEEE Int. Syst. On Chip Conf., Sep.

2007, pp. 95–98.

A. Sanchez-Macian, P. Reviriego, and J. A.

 ISSN 2347–3657

Volume 1,Issue 1,Feb 2013

Maestro, “Hamming SEC-DAED and extended

hamming SEC-DED-TAED codes through

selective

