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Abstract: 
 

In order to safeguard memory against radiation, this study lays forth an effective method for correcting Multiple Bit Upsets (MBUs). The 

main problem with the old method of protecting memories from MBUs—which included using several sophisticated error correction codes—

was the increased redundant memory expense.To guarantee memory dependability, this article suggested a 64-bit Matrix Code. In order to 

find and fix additional mistakes, the suggested protection code used a process. The results demonstrated a degree of protection against huge 

MBUs in memory for the suggested method. One of the most significant issues with the dependability of memory in a radiation environment 

is transient multiple bit upsets (MBUs). To repair memory errors, the suggested approach makes use of a 64-bit matrix. More complicated 

error correction codes (ECCs) are often used to safeguard memory against MBUs corrupting data, but their primary drawback is the increased 

delay overhead they entail. There have been recent proposals for memory protection using matrix codes (MCs) based on Hamming codes. 

The fact that they are error correction codes twice is the biggest problem, and not every situation benefits from the expanded mistake correction 

capabilities. Also, without affecting the overall encoding and decoding procedures, erasure codes are suggested as a means to lessen the area 

overhead of additional circuits. These days, several error detection and repair techniques are used to secure memory bits with protection codes, 

which is essential for ensuring a high degree of dependability. More redundant bits are needed to ensure improved memory dependability, 

which is the only downside of the present MC. In order to guarantee stability in the face of multiple bit upset, remove unnecessary bits, and 

rectify more errors than the present system, the suggested approach employed matrix coding. 
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I. INTRODUCTION 

 
The soft error rate in memory cells is growing at a rapid pace 

as CMOS technology shrinks to the nanoscale and memories 

are integrated with more and more electronic systems. This is 

particularly true when memories function in space 

environments, subjected to the ionizing effects of atmospheric 

neutrons, alpha particles, and cosmic rays. Memory reliability 

is greatly affected by single bit upsets, but in some memory 

applications, reliability is also greatly affected by  
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multiple cell upsets (MCUs). For a long time, certain error 

correction codes (ECCs) have been extensively utilized to 

safeguard memories against soft faults, with the goal of 

making memory cells as fault-tolerant as feasible. For 

instance, memory-related MCUs have been addressed using 

codes such as Bose, Chaudhuri, Hocquenghem, Reed-

Solomon, and punctured difference set (PDS). On the other 

hand, these codes incur additional space, power, and delay 

costs.
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because these intricate codes need more 

sophisticated encoding and decoding systems.In 

order to accomplish error detection and repair, it 

is common practice to include redundant data in 

messages. This allows the receiver to verify the 

integrity of the message and recover corrupted 

data. It is possible to have a systematic or non-

systematic approach to error identification and 

correction: In a methodical scheme, the sender 

transmits the one-of-a-kind data along with a 

predetermined amount of check bits, also called 

parity data, that are calculated from the data bits 

using a deterministic algorithm. If the receiver's 

main concern is with error detection, then all it 

needs to do is apply the same method to the data 

bits it has received and compare the results to the 

receive check bits; if the values don't match, then 

an error has happened during transmission. 

Lower-layer communication and dependable 

storage on media like CDs, DVDs, hard drives, 

and RAM both make frequent use of error-

correcting codes.Due to its low cost, high 

density, flexibility, and rapid time-to-market, 

static RAM based FPGAs are most often 

employed in a range of applications. The 

configuration data of logic cells is stored in the 

static memory of an FPGA that is based on 

SRAM, which is structured as a latch array. 

Creating intricate digital circuits is a breeze using 

FPGA. Using SRAM also lowers power usage. 

At high frequencies, static random access 

memory (SRAM) may be just as power-hungry 

as dynamic random access memory (RAM), and 

certain integrated circuits can require several 

watts when operating at maximum bandwidth. In 

contrast, static RAM requires a tiny amount of 

power when not in use (a few micro watts) and 

uses even less power while running at a slightly 

slower rate, as is the case with applications that 

employ moderately clocked microprocessors. To 

control how much power SRAM-based memory 

architectures use, many methods have been 

suggested.Arrays of programmable logic blocks 

linked by a programmable routing network and 

I/O blocks make up an FPGA device that can be 

customized using SRAM. FPGA devices based 

on SRAM are gaining popularity because to their 

re-programmability, low development cost, and 

good performance.FPGAs using denser 

integration methods and nanoscale technology. 

One of the most common components of 

electronic systems is the memory. The efficiency 

of a circuit is significantly diminished when 

exposed to environmental radiation. A charged 

particle in the environment may cause a single-

event upset (SEU) if it strikes a circuit's silicon 

and causes an error. Soft mistakes occur when an 

FPGA device makes a mistake that compromises 

the mapped design's functioning. The hardware 

of a system is unaffected by a soft mistake; the 

data being processed in memory is the only thing 

that gets damaged. One solution to this problem 

is the use of Built-in Current Sensors (BICS) in 

combination with Single Error 

Correction/Double Error Detection (SEC-DED) 

codes to safeguard memory against MBUs. 

However, only SEU could be fixed using those 

procedures. This study presents a general 

scrubbing system that uses the idea of the Erasure 

coding algorithm to recreate the erroneous 

configuration frame. It may be used for both 

mistake detection and rectification. This Erasure 

coding scheme sorts interleaving distance into 

horizontal and vertical parity, which is used to 

identify MBUs. 

 

II. Patterns of MBUs 

 

To control MBUs, which physically rearrange 

bits to create new words from the same logical 

word, the interleaving approach has been used. 

The interleaving method, however,may not be 

applicable to content-addressable memory 

(CAM) due to the close relationship between the 

hardware architectures of bits and comparison 

circuits.A more recent proposal suggests using 2-

dimensional matrix codes (MCs), which split a 

word into many logical columns and rows, to 

effectively correct MBUs per word with a short 

decoding time. Each column has parity code 

applied to it, and the bits per row are secured by 

Hamming code. In a Hamming-based MC, the 

vertical syndrome bits are turned on to fix the two 

mistakes that are discovered by Hamming. 

Consequently, MC can only ever fix a maximum 

of two mistakes. It has been proposed to 

implement a solution at the software level that 

integrates algorithmic and Hamming code. To 

find and fix subtle mistakes, it adds integer 

values. The results demonstrate that this method 

outperforms other codes in terms of delay 

overhead. To help with single-error correction 

and double-error detection codes, built-in current 

sensors (BICS) are suggested to provide 

protection against MBUs. But this method can 

only fix two mistakes per word.To improve 

memory reliability, this work proposes a new 

matrix code based on the divide-symbol 

algorithm. An technique that uses integer 

addition and integer subtraction is used to find 

flaws in the proposed matrix coding. Using an 

algorithm has several benefits, one of which is 

improving memory dependability by maximizing 

error detection capabilities. Also, without 

interfering with the encoding and decoding 

procedures, erasure codes are suggested as a way 
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to reduce the area overhead of additional circuits. 

 

 

 

 
Fig. 1 Encoding and decoding of erasure codes. 

II. PROPOSED DMC 

 
In this section, DMC is proposed to assure reliability 

in the presence of MCUs with reduced performance 

overheads, and a 64-bit word is encoded and decoded 

as an example based on the proposed techniques. 

A. Proposed Schematic of Fault-Tolerant Memory: 

 
The schematic of fault-tolerant memory is as shown 

in Fig. 2. The DMC encoder is fed with information 

bits D, during the encoding (write) process, and then 

the DMC encoder produces the vertical redundant 

bits V and horizontal redundant bits H. The obtained 

DMC code word is stored in the memory, once 

encoding process is completed. If the memory is 

affected by MCUs, in the decoding (read) process 

these errors can be corrected. The proposed DMC has 

higher fault- tolerant capability with higher 

performance because of decimal algorithm. The 

fault-tolerant memory uses ERT technique, to reduce 

extra circuit’s area overhead and will be introduced 

in the following sections.Proposed DMC Encoder 

 
The DMC proposes, first, it performs the ideas of 

divide-symbol and arrange-matrix, i.e. symbols of m 

bits (N = k × m) is obtained by dividing the N-bit 

word, and these symbols are arranged in a k1 × k2 2-

D matrix (k = k1 × k2,  

Fig. 2 Proposed schematic of fault-tolerant 

memory protected with DMC 

where k1 and k2 values represent thenumbers of rows 

and columns in the logical matrix respectively). 

Second by decimal integer addition of selected 

symbols per row the horizontal redundant bits H are 

obtained. Here, each symbol is regarded as a decimal 

integer. Third, by binary operation among the bits per 

column the vertical redundant bits V are obtained. It 

should be noted that instead of in physical both divide-

symbol and arrange-matrix are implemented in 

logical. Therefore, the physical structure of the 

memory is not required to be changed as according to 

the proposed DMC. 

We considered a 64-bit word as an example, to explain 

the proposed DMC scheme, as shown in Fig. 2. From 

D0 to D63 cells are information bits. Eight symbols of 

4-bit are obtained by dividing 64-bit word. By 

choosing k1 = 2 and k2 = 4 simultaneously. Horizontal 

check bits are H0–H39; vertical check bits are V0 

through V31 are. However, it should be mentioned 

that the number of redundant bits and the maximum 

correction capability (i.e., the maximum size of 

MCUs can be corrected) are different when values for 

k and m are chosen different. Therefore, to maximize 

the correction capability and minimize the number of 

redundant bits k and m should be carefully adjusted to 

maximize the correction capability and minimize the 

number of redundant bits. For example, in this case, 

when k = 2×2and m = 8, only 1-bit error can be 

corrected and the number of redundant bits is 80. 

When k = 4 × 4 and m 

= 2, 3-bit errors can be corrected and the number of 

redundant bits is reduced to 32. However, when k = 

2 × 4 and m = 4, the maximum correction capability 

is up to 5 bits and the number of redundant bits is 72. 

In this paper, in order to enhance the reliability of 

memory, the error correction capability is first 
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considered, so k = 2 × 8 and m = 4 are utilized to 

construct DMC. 

The horizontal redundant bits H can be obtained by 

decimal integer addition as follows 

H4H3H2H1H0 = D3D2D1D0 + D19D18D17D16 

(1) H9H8H7H6H5 = D7D6D5D4 + 

D23D22D21D20 (2) 

and similarly for the horizontal redundant bits 

H14H13H12H11H10,

 H19H18H17H16H15

H16, H24H23H22H21H20, 

 H29H28H27H26H25, 

H34H33H32H31H30 and H39H38H37H36H35 

where 

“+” represents decimal integer 

addition. For the vertical redundant 

bits V, we have 

V0 = D0 ^ D31 (3) 

V1 = D1 ^ D32 (4) 

and similarly for the rest vertical redundant bits. 

The encoding can be performed by decimal and 

binary addition operations from (1) to (4). The 

encoder that computes the redundant bits using multi 

bit adders and XOR gates is shown in Fig. In this 

figure, H39 − H0 are horizontal redundant bits, V31 

− V0 are vertical redundant bits, and the remaining 

bits U63 − U0 are the information bits which are 

directly copied from D31 to D0. The enable signal 

En will be explained in the next section. 

 

 
 

 Fig 3: 64-bits DMC logical 

organization (k = 2 × 8 and m = 4). Here, each 

symbol is regarded as a decimal integer 
Fig 4: 64-bit DMC encoder structure using 

multi bit adders and XOR gates 
 

B. Proposed DMC Decoder 

 
To obtain a word being corrected, the decoding 

process is required. For example, first, the received 

redundant bits H4H3H2H1H0’ and V0’-V3’ are 

generated by the received information bits D’. Second, 

the horizontal syndrome bits 

∆H4H3H2H1H0 and the vertical syndrome bits S3 − 

S0 can be calculated as follows: 

∆H4H3H2H1H0 = H4H3H2H1H0’ − H4H3H2H1H0 

(5)information bits D’ and compared to the original 

set of redundant bits in order to obtain the syndrome 

bits 

∆H and S. Then error locator uses ∆H and S to detect 

and locate which bits some errors occur in. Finally, 

in the error corrector, these errors can be corrected by 

inverting the values of error bits. 

𝑆0 = 𝑉0’^𝑉0 (6) 

and similarly for the rest vertical syndrome bits, where 

“−” represents decimal integer subtraction. When 

∆H4H3H2H1H0 and S3 − S0 are equal to zero, the 

stored code word has original information  

 

 

 

 

bits in symbol 0 where no errors occur. When 

∆H4H3H2H1H0 and S3 − S0 are nonzero, theinduced 

errors (the number of errors is 4 in this case) are 

detected and located in symbol 0, and then these errors 

can be corrected by 

𝐷0𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = 𝐷0 ^ 𝑆0 (7) 

 
The proposed DMC decoder is depicted in Fig, which 

is made up of the following sub modules, and each 

executes a specific task in the decoding process: 

syndrome calculator, error locator, and error corrector. 

It can be observed from this figure that the redundant 
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bits must be recomputed from the received 

Fig 5: 64-bit DMC decoder structure using ERT 

 

 

Fig 6: limits of binary error detection in simple 

binary operations 

By recycling its encoder, the suggested method 

reduces the DMC's circuit size. This system is 

known as the ERT. Without interfering with the 

whole encoding and decoding process, the ERT 

may lower the DMC area overhead. It is also 

possible to acquire the syndrome bits in the DMC 

decoder by reusing the DMC encoder, as shown in 

Figure. Consequently, by using the existing 

encoder circuits, the total circuit size of the DMC 

may be decreased. In addition, the suggested 

decoder with an enable signal En for determining 

whether the encoder is required to be part of the 

decoder is also shown in this picture. To rephrase, 

the En signal, which is controlled by the write and 

read signals in memory, is used to differentiate the 

encoder from the decoder. As a result, the DMC 

encoder is only an encoder during the write phase 

of encoding. Decoding (reading) requires this 

encoder, however, since it calculates the syndrome 

bits. These examples demonstrate how the area 

overhead of additional circuits may be 

significantly reduced. 

III. RESULT

S Block diagram 

 

 
RTL Schematic 

 

 

 

Technology Schematic 

 

Simulation Results 

 

 

 

 

IV. CONCLUSION 

 

This work introduced DMC as a means to guarantee 

memory reliability. More mistakes were found and 

fixed since the suggested protection code used a 

decimal approach to identify them. The findings 

collected suggest that the proposed technique provides 

a greater degree of protection against big MCUs in 

memory. To maximize memory reliability while 

minimizing the number of redundant bits, a reasonable 

combination of k and m should be chosen based on 

radiation experiments in actual implementation. The 

only drawback of the proposed DMC is that more 
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redundant bits are required to maintain higher 

reliability of memory. So, in order to keep the 

suggested approach reliable and reduce the number of 

unnecessary bits, further work will be done in the 

future 
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