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ABSTRACT 

Considering the importance of the energy management strategy for hybrid electric vehicles, this paper is aiming 

at addressing the energy optimization control issue using reinforcement learning algorithms. Firstly, this paper 

establishes a hybrid electric vehicle power system model. Secondly, a hierarchical energy optimization control 

architecture based on networked information is designed, and a traffic signal timing model is used for vehicle 

target speed range planning in the upper system. More specifically, the optimal vehicle speed is optimized by 

a model predictive control algorithm. Thirdly, a mathematical model of vehicle speed variation in connected and 

unconnected states is established to analyze the effect of vehicle speed planning on fuel economy. Finally, three 

learning-based energy optimization control strategies, namely q-learning, deep q network (dqn), and deep 

deterministic policy gradient (ddpg) algorithms, are designed under the hierarchical energy optimization control 

architecture. It is shown that the q-learning algorithm is able to optimize energy control; however, the agent will 

meet the “dimension disaster” once it faces a high-dimensional state space issue. Then, a dqn control strategy is 

introduced to address the problem. Due to the limitation of the discrete output of dqn, the ddpg algorithm is put 

forward to achieve continuous action control. In the simulation, the superiority of the ddpg algorithm over q-

learning and dqn algorithms in hybrid electric vehicles is illustrated in terms of its robustness and faster 

convergence for better energy management purposes. 

 

INTRODUCTION 

Under growing demand for energy and stricter 

emission standards, developing new energy vehicles 

is considered a primary strategic measure to ease the 

global energy crisis and environmental pollution 

problems (ding and li, 2021, dai et al., 2021, mei et 

al., 2022b). Hybrid electric vehicles (hevs), electric 

vehicles (evs), and fuel cell vehicles are the three 

primary categories of new energy vehicles (hu et al., 

2019, mei et al., 2022a). The benefits of electric 

vehicles include no emissions, high power 

efficiency, and low energy use. Still, the current 

battery technology is not yet developed; achieving 

an efficient driving range is difficult.  
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Fuel cell vehicles are highly efficient, have 

low emissions, and can travel long 

distances without refueling. However, few 

cases can prove sufficient stability and 

reliability of fuel cell vehicles. The hev is 

better than the other two electric vehicles 

because it can go further and has more 

flexible working modes (jauch et al., 2018). 

It is thought that this is the best way to solve 

environmental and energy 

problems (delprat et al., 2017, huang et al., 

2022, karimi and lu, 2021). As far as hev 

are concerned, energy management control 

strategies are a hot topic. On the one hand, 

the three main energy management 

strategies for hevs are rule-based, 

optimization-based, and learning-

based (lian et al., 2020). The quick advance 

of machine learning, in particular deep 

learning and reinforcement learning (rl), 

has led to the emergence of alphago and 

alphago zero in various fields (arulkumaran 

et al., 2017a, lopez-garcia et al., 2020). As 

a result, the energy management strategy 

for hevs was used as a model for the 

learning-based energy management 

strategy. The research showed that du et al. 

(2020a), in terms of fuel cost and 

calculation speed, the dyna and q-learning 

algorithms had comparable performance. 

So that the hybrid power system can be 

controlled in real-time, lin et al. (2021) 

combined an online recursive algorithm and 

q-learning to update the control strategy in 

real-time. Hu et al. (2018) applies deep rl to 

the energy management control strategy. 

The simulation results show its advantages 

by comparing the rl to the rule-based 

strategy. Different energy management 

strategies based on rl and occurring in real-

time were made by xiong et al. (2018). The 

control action can be updated in real-time 

by integrating the q-learning algorithm into 

the value function. At present, most 

reinforcement learning control strategies 

applied to hev are using the q-learning 

optimization algorithms. Still, when the q-

learning algorithm deals with high-

dimensional state space problems, it will 

cause the “curse of dimensionality” 

problem in the training process of the agent. 

The operation of hev is a continuous 

process, which is more suitable for control 

strategies such as dqn and ddpg. Although 

the above literature can optimize the 

vehicle’s energy management strategy to 

some extent, the energy management needs 

to optimize the vehicle controller and 

consider the impact of traffic flow from a 

macro perspective. Therefore, designing a 

hierarchical controller to optimize traffic 

and vehicle control is necessary, partly 

motivating us for the current study. On the 

other hand, the performance of energy 

optimization relies on predicting the vehicle 

state. In contrast, the vehicle speed is 
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affected by many factors, such as traffic 

conditions, road type, weather, and driving 

style (lois et al., 2019). It is, therefore, 

necessary to incorporate future driving 

information into the energy management 

system to improve fuel economy. In 

addition, recent studies have shown that 

sensors and information technology are 

critical for fuel economy improvement as 

the constant changing of driving and road 

conditions makes it difficult to predict (wu 

et al., 2019). Thus, combining vehicle-

specific signals with eco-driving to 

optimize the energy management system 

will receive continuous attention in the 

future. It is shown that predictive 

information to design energy management 

systems can help improve vehicle fuel 

economy and enhance real-time 

practicability. Energy optimization can be 

divided into control strategies based on path 

preview, ecological driving, and real-time 

vehicle speed prediction based on the 

obtained information. Tang et al. (2021) 

pointed out that using the traffic preview 

information to optimize the hev’s power 

distribution and speed can further improve 

fuel economy. In order to improve energy 

efficiency, du et al. (2022) achieved 

sufficient speed tracking through 

previewing road gradient information and 

speed allocation within a short field of 

view, thereby achieving potential energy 

savings. Xie et al. (2019) considered the 

influence of road gradient on battery charge 

and discharge. They put forward an hev 

energy management approach utilizing a 

stochastic model predictive controller 

under the premise of road gradient preview. 

The result demonstrates that the battery soc 

can be kept within a specific range, 

resulting in improved fuel efficiency. Nie 

and farzaneh (2022) used a neural network 

model to predict the following vehicle’s 

velocity, considering the vehicle-to-vehicle 

and vehicle-to-infrastructure 

communication. Moreover, the authors 

applied the predicted speed to the 

equivalent consumption minimization 

strategy to achieve power splitting and 

improve fuel economy. Although many 

scholars have researched speed planning, 

only some link speed planning with the 

energy management strategy for more 

detailed analysis. This article has the 

following innovations: (i) a hierarchical 

energy optimization control architecture 

based on network information is designed. 

Aiming at the optimal target speed planning 

problem of hev in the upper system based 

on the network information obtained by v2i 

and v2v communication, the traffic signal 

timing model is used to plan the vehicle 

target speed range. Then the vehicle speed 

is optimized through the mpc algorithm. (ii) 

in the lower layer system of the hierarchical 
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energy optimization control architecture, 

various energy optimization control 

strategies for hybrid electric vehicles based 

on reinforcement learning are designed to 

improve the vehicle’s fuel economy. 

Regarding the q-learning algorithm dealing 

with high-dimensional state space problems 

will cause the agent to have a “dimension 

disaster” problem during training. Also, 

considering dqn can only output discrete 

actions, an energy-optimized control 

strategy based on ddpg deep deterministic 

policy gradient algorithm is designed to 

realize continuous action control. 

Hybrid power system modeling 

The powertrain architecture of hevs, shown 

in fig. 1, includes an engine, motor 1 (mg1), 

motor 2 (mg2), power battery, and 

planetary gear mechanism. The specific 

powertrain configuration is shown in 

table 1. The engine is inactive when the hev 

starts, and mg2 is the power source. If the 

hev cruise under low load, the engine 

torque is split into two parts via planetary 

gears. Part of the torque is used to drive the 

hev; the other part is utilized to charge the 

battery via mg1. The motor and 

Speed planning control 

Based on the hierarchical optimization 

control architecture of network 

information, this paper focuses on the 

energy optimization control problem of 

single-hev in the road environment. Fig. 4 

illustrates that the upper control system can 

use v2v and v2i communication to obtain 

information such as the vehicle’s position, 

speed, and traffic light status in the road 

environment. The signal phase and timing 

(spat) model can calculate an hev passes in 

a blue light state (huang et al., 2021). The 

Deep reinforcement learning 

In the networked environment, the upper 

control system of hev uses the network 

information obtained by v2i and v2v 

communication to plan the optimal target 

speed. The primary object of the lower 

control system is to design a reasonable and 

efficient energy optimization controller for 

the hev. 

According to previous research, 

reinforcement learning is suitable for 

solving the following problems (du et al., 

2020a, liu et al., 2017, zou et al., 2016): (1) 

the reinforcement learning agent will take 

Optimal control strategy 

verification analysis 
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Conclusion 

This paper designed a hierarchical 

optimization control architecture based on 

network information. The upper control 

system proposes network information such 

as traffic light status information, the 

distance of the driving section, road speed 

limit, and other network information based 

on V2I and V2V communication. The 

Model Predictive Control algorithm 

calculates the optimal speed of the vehicle. 

The lower layer system uses the 

reinforcement learning algorithm to study 

the energy optimization  This paper has 

proposed a novel design approach to obtain 

an autonomous longitudinal vehicle 

controller. To achieve this condition, a 

vehicle architecture with its ACC 

subsystem has been presented. With this 

architecture, we have also described the 

specific requirements for an efficient 

autonomous vehicle control policy through 

RL and the simulator in which the learning 

engine is embedded. A policy-gradient 

algorithm estimation has been introduced 

and has used a backpropagation neural 

network for achieving the longitudinal 

control.  Then, experimental results, 

through simulation, have shown that this 

design approach can result in efficient 

behavior for CACC. Much work can still be 

done to improve the vehicle controller 

proposed in this paper. First, it is clear that 

some modifications to the learning process 

should be made to improve the resulting 

vehicle-following behavior. Issues related 

to the oscillatory behavior of our vehicle 

control policy can be addressed by using 

continuous actions. This case would require 

further study to efficiently implement this 

approach, because it brings additional 

complexity to the learning process.Once the 

oscillatory behavior of the RL approach has 

been addressed, it would be profitable to 

compare it with a control obtained by the 

traditional proportional–integral–derivative 

(PID) controllers. Some elements with 

regard to our simulation framework can 

also be improved, with the ultimate goal of 

having an even more realistic environment 

through which we can make our learning 

experiments. In fact, an important aspect to 

consider would be to integrate a more 

accurate simulator for sensory and 

communication systems. This way, we can 

eliminate some of our current assumptions, 

e.g., the absence of sensor and 

communication noise.  This condition 

would make the learning process more 

complex, but the resulting environment 

would be much closer to real-life 

conditions. Our controller can also be 

completed by an autonomous lateral control 

system. Again, this approach can be done 

using RL, and a potential solution is to use 

a reward function in the form of a potential 
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function over the width of a lane, similar to 

the current force feedback given by the 

existing lane-keeping assistance system. 

This reward function will surely direct the 

driving agent toward learning an adequate 

lane-change policy. The lateral control 

system may be completed by a situation 

assessment for automatic lane-change 

maneuvers, as proposed by Schubert et al. 

Finally, the integration of an intelligent 

vehicle coordination system for 

collaborative decision making can 

transform our system into a complete DAS. 
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