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Using a genetic programming–based hyper-heuristic strategy, we 

automatically build evolutionary algorithm operators to solve the 

bi-objective water distribution network design issue. 
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ABSTRACT  

Finding the appropriate pipe diameters that give the greatest service at the lowest cost is at the heart of the water distribution network 

(WDN) design challenge, which is of ongoing relevance in the UK and across the world. As a result, a plethora of solutions to this issue 

have been presented in the literature, with many of them taking a more bespoke, artisanal approach. In this research, we look into a new 

hyper-heuristic technique that use genetic programming (GP) to develop mutation operators for evolutionary algorithms (EAs) tailored 

to a dual-goal formulation of the WDN design issue (minimizing WDN cost and head deficit). The evolved operators, once developed, 

may be employed indefinitely across all EAs on all WDNs to boost performance. We show that it is possible to develop a set of mutation 

operators for a single training WDN using a unique multi-objective approach. The top operators are rigorously tested on three different, 

more difficult test networks. In this experiment, we develop a set of 83 operators. Ten that made the cut are dissected here. While GP5 

exhibits the method's capacity to locate well-known operators like a Gaussian, GP1 is proven to be very successful and adds important 

domain-specific learning (pipe smoothing). 
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INTRODUCTION 

 Optimising pipe sizes in a water distribution 

network to meet customer demand under 

operational hydraulic restrictions like head and 

velocity requirements is at the heart of the water 

distribution network design challenge. Changing 

the diameters of pipes has an effect on the 

network's hydraulic conditions and, by extension, 

the network's quality as measured by its capacity to 

meet varying demand points. Because each pipe 

has an impact on the overall hydraulic conditions, 

alterations to a single pipe will have varying 

impacts on the conditions throughout the network 

due to the interdependencies between the relative 

sizes of the various pipes. Therefore, the size of 

each pipe in the network must be considered in 

conjunction with the other pipes. Due to this 

combinatorial impact, it is hard to enumerate all 

conceivable designs in an acceptable amount of 

time, even for relatively small networks. WDN 

design is considered an NP-hard task because there 

are an enormous number of possible solutions—for 

instance, if there were six alternative sizes for each 

pipe in a network of only 30 pipes, there would be 

2.21 1023 possible combi nations—far more than 

can be evaluated in a practical amount of time.By 

creating computational models of these networks in 

software like EPANET (Rossman), the quality of 

possible WDN designs (candidate solutions) may 

be assessed against a variety of criteria, such as the 

capacity to supply demand. Such models allow for 

the automated evaluation of possible network 

architectures, paving the way for the adoption of 

optimisation methods such genetic algor items 

(GAs) (Goldberg; Simpson et al.; Savic' & Walters 

1997). Evolutionary algorithms (EAs), of which 

GAs are a subset, are inspired by nature and seek 

optimal network designs by iteratively mutating 

and proposing new designs across a large number 

of generations. 
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 This process is meant to resemble Darwinian 

evolution. Although it has been shown repeatedly 

in the literature that these conventional 

optimization techniques are effective at solving the 

WDN design problem, a new methodology known 

as hyper heuristics has emerged in recent years that 

is more effective at solving a broad class of 

optimization problems, including the WDN design 

problem. Hyper-heuristics use machine learning 

techniques to tailor the optimiser (e.g., EA) to each 

problem, such as the WDN design problem, 

through automated learning methods or, as is the 

case in this paper, the construction of optimised 

heuristics (like a GA's mutation operator), resulting 

in improved performance over traditional 

optimisers like EAs. It is possible to optimize 

large-scale problems in a reasonable amount of 

time with the help of meta-optimisation techniques 

like hyper-heuristics, which allow for more 

efficient solution of optimisation problems by 

optimising the optimiser and tailoring them to the 

problem. 

The water supply network design 

conundrum  

Historically, the WDN design problem has been 

formulated as a single-objective problem where the 

quality of the network is based solely on the 

economic impact of the design; that is, for a given 

layout, the best network design is the one that 

satisfies the hydraulic requirements at the lowest 

possible cost. A range of allowable node pressures 

or pipe velocities is often provided as the hydraulic 

restrictions. The literature is full of several 

approaches to the WDN issue and their respective 

merits. The usage of GAs (Goldberg &; Simpson 

&; Savic & Walters) and other meta-heuristic EAs 

(Laumanns et al.) is widespread. These approaches 

model the evolutionary process by searching for 

optimal network architectures across several 

generations using 'populations' of individual 

designs. It is widely accepted that EA approaches 

need a significant number of evaluations of 

prospective networks in order to discover suitable 

network designs, despite the fact that these 

techniques have been proved to be successful in 

solving a range of single-objective and multi-

objective variations of the WDN. However, 

exploring bigger network designs might be 

prohibitive due to the costly nature of EA search 

(in terms of time and computer resources) and the 

complexity and sluggish run durations of many 

networks’ simulation tools. 

Hyper-heuristics 

 In recent years, a novel approach known as hyper-

heuristics has arisen in the area of optimization 

(Cowling et al., Burke et al.). Using highly 

specialized domain-specific knowledge, this new 

paradigm is committed to extracting essential 

optimisation mechanisms and making them more 

generic across many diverse sets of optimisation 

issues. Selective hyper-heuristics and generative 

hyper-heuristics have been found in the literature 

(Burke et al., ). In order to improve search time and 

accuracy, selective hyper-heuristics are developed 

to optimize the selection and sequencing of existing 

"low-level heuristics," such the mutation operators 

in an EA. The MCHH (McClymond et al. b) is an 

online selective hyper-heuristic for embedding in 

meta-heuristics; the AMALGAM (Read et al.) is a 

multi-method online selective hyper-heuristic that 

controls population assign mint for multiple meta-

heuristics; both are examples of selective hyper-

heuristics used in hydro-informatics. 

METHOD  

Keed well and Khu () point out some aspects of the 

WDN design challenge that might be used to speed 

up and refine the search. To begin, the network 

topology is unchangeable, and every connection 

between pipes (the optimization parameters) is also 

set in stone. In addition, simulation allows us to 

link unique conditions to each pipe. The upstream 

node's head, for instance, may be linked to each 

pipe that feeds it while we evaluate the network as 

a whole to establish the design's viability. If the 

head pressure at a node is too high, for instance, it's 

fair to presume that the diameter of the pipes 

serving that node is too great and may benefit from 

being lowered. In a similar vein, if a node has a 

head deficit, it's likely because the pipe feeding it is 

too narrow. By using these guidelines, one may 

construct knowledgeable mutation operators that 

care for these hydraulic considerations while 

designing new networks. This section explains how 

to create innovative mutation operators for the 

WDN design problem using a multi-objective 

generative hyper-heuristic framework. A hyper-

heuristic framework for generating solutions the 

overall generative hyper-heuristic framework for 

this investigation is shown in Figure 1. 'Optimal' 

mutation operators that can be applied to any WDN 

are evolved with the help of a training network, in 

this case a basic WDN. The generative framework 

comprises three distinct steps: initialization, 

generation, and evaluation. The initial population 

of mutation operators used in the optimization 

process is generated at random during the 

initialisation phase. The sample network designs to 

the underlying WDN that are used to test the 

evolved mutation operators are also generated 

during the initialise phase. To provide as much of a 
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level playing field as possible, we have locked in 

the sample solutions (potential WDN designs). 

 

Figure 1 | General generative framework. Elements 

with dashed, shaded boxes indicate generative 

optimisation actions and grey shaded elements 

indicate interaction underlying problem class. The 

framework shows how a probability distribution 

function (PDF), in this case a specialised GP tree, 

can be evolved using samples from a training 

network in using the generative hyper-heuristic 

approach. 

contrasting how different mutation 

operators are changing throughout 

time. 

 The create phase is an optimization loop in which 

a subset of the current population of mutation 

operators is subjected to variation, evaluation, and 

selection based on how well it matches designs 

taken from the underlying training network. This 

optimization cycle is iterated until a cut-off is 

reached, such as a certain number of generations. 

The best evolved mutation operators are then 

further assessed by being inserted into identical 

EAs and being applied to a set of test networks (in 

this instance, the Anytown benchmark and two 

real-world WDNs) once the generative 

optimisation phase has concluded. In the 

assessment step, we test how effectively the 

developed mutation operators work throughout the 

whole search process and how applicable they are. 

Over-fit mutation operators are removed from the 

training network during the assessment phase. 

LABORATORY SETUP  

In this part, we present an experiment that 

demonstrates how the aforementioned hyper-

heuristic approach may be used to optimize EA 

mutation operators for the WDN design issue. The 

experiment was designed to prove the viability of 

the suggested approach in general, rather than in 

reference to any particular EA technique. Instead, 

the suggested method is intended to be EA-agnostic 

so that it may be used with any specialized EA or 

an EA that is more complex than the ES used here. 

Due to the potential for complex characteristics of 

more complex EAs to muddy the data and obscure 

the aspects of interest in this experiment, we opted 

for a basic EA, in this instance an ES. The 

experiment is carried out so that specialized 

mutation operators that have developed to solve the 

WDN design issue may be compared to one 

another and to a standard operator from the 

literature, such as a Gaussian mutation, for 

purposes of evaluation. Other, more complex 

optimization methods are not compared to the 

evolved operators since they are outside the scope 

of this research and cannot be compared fairly due 

to the presence of numerous additional variables 

that would considerably skew the findings, such as 

the selection strategy. Since evolved operators are 

not complete stand-alone optimization strategies, 

there is no need for a comparative examination of 

them with other optimisers. 

RESULTS 

 Agents of mutation that have evolved  

Figure 3 shows a scatter plot of the hyper-heuristic 

objective values for all 20 of the evolved mutation 

operators (including the 10 chosen mutation 

operators) that were evolved on the Hanoi training 

problem using SPEA2. You may find the full set of 

findings for all 83 Pareto optimum evolved 

operators in Table 3 of Appendix 1 (visitable at 

http://www. iwaponline.com/jh/016/226.pdf). As 

described in the Method section, three different sets 

of sample network designs were used to assess the 

efficacy of each of the evolved mutation operators. 

In this example, the training network was Hanoi. 

Overall, the results from theValues for 20 of the 83 

most effective evolved mutation operators are listed 

in Table 1. For the 10 emphasized mutation 

operators shown in Figure 3 and discussed in 

further depth below, the objectives are indicated. 

Each GP operator's 'close','mid', and 'far' objective 

values are shown in their respective columns. 

Newly added columns provide the standard 

deviation of values acquired across the training set 

to demonstrate the degree of variation in the 

performance of the mutation operators across each 

target. 
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operator on sample network designs from each 

sample set in order to establish its fitness, or 

objective quality. The 'close' metric was judged 

based on how well it performed on a set of optimal 

network configurations. Themed' goals were 

evaluated using the 'average' quality network 

design set, while the 'far' goals were evaluated 

using the 'worst' quality set. The quality of the 

mutation operator for the 'near' and'mid' range set 

of network designs is presented along the (x, y) 

axes. The size of the points indicates the relative 

importance of the third goal, which is to evaluate 

mutation operators on network topologies that are 

"far" from the Pareto front. In most cases, mutation 

operators that do well in the 'near' range network 

design’s goal tend to do poorly in the 'far' 

objective, and vice versa for those that are strong in 

the'mid' objective. The general rise in point sizes 

('far' objective) as the'mid' objective values rise 

demonstrates the poor relationship between the two 

metrics. 

Two of the objectives are shown on the (x, y) axes 

for the mutation operator quality on the ‘close’ and 

‘mid’ range set of network designs used for 

training. The third objective, assessing mutation 

operators on network designs ‘far’ from the Pareto 

front, is indicated by the size of the points; where 

smaller point sizes are given for smaller, better 

objective values on that set of points. Generally, the 

mutation operators which perform well on the 

‘close’ range network design’s objective do not 

perform well on the ‘far’ objective, while those that 

are good in the ‘mid’ objective tend to perform 

well on the ‘far’ objective. The weak correlation 

between the ‘mid’ and ‘far’ objectives can be seen 

by the general increase in point sizes (‘far’ 

objective) as the ‘mid’ objective values increase. 

The evolved mutation operators produce an 

interesting Pareto front where the GP evolved 

mutation operators are most commonly specialised 

for one of the three different objective values. This 

produces a higher density of evolved solutions at 

the extremities of the Pareto front with fewer 

mutation operators producing a good trade-off 

between all three objectives. Ten GP evolved 

mutation operators are highlighted on the plot 

(Figure 3) which represent a range of GP trees and 

objective values. Of specific interest are GP1, GP5 

and GP10, which are shown later in the test WDN 

optimisation results to produce very different 

convertgene behaviours. Of note are objective 

values of the GP1 and GP5 mutation operators 

which are both shown below o perform well on the 

test WDN problems as well as obtaining potentially 

the most favourable trade-off between the three 

objectives on the training Hanoi problem. The GP1, 

5 and 10 mutation operators are shown in Figure 4. 

Each of the three mutation operators represent a 

different class of evolved mutation operator and 

were selected to illustrate the variety of mutation 

operators that can be constructed using the multi-

objective generative hyper-heuristic method 

proposed in the Method section. The mutation 

operators range from entirely deterministic 

operations in GP10 through to the entirely random 

GP5. GP1 provides a mix of these two types of 

operation through a combination of random 

mutation and deterministic, domain-specific 

operations. 

CONCLUSION  

In order to solve the bi-objective WDN design 

issue, this work introduces a unique GP evolved 

decision tree generative hyper-heuristic approach. 

Domain information, in the form of attributes like 

downstream node head conditions, is used by many 

of the GP decision tree-based mutation operators to 

choose the sort of mutation to apply to each chosen 

pipe. The Hanoi benchmark issue is used to train 

the technique and its GP evolving mutation 

operators, which were developed using SPEA2. On 

the Anytown benchmark and on two real-world 

networks, we evaluated 10 different GP evolved 

mutation operators from the top evolved mutation 

operators. The results revealed the varying 

behaviours and resulting convergence features of 

the mutation operators. Some of the improved 

mutation operators were also shown to be more 

stable on the bigger test networks. While the GP10 

mutation operator does well on the smaller 

networks, it struggles to scale to the bigger 81-pipe 

industrial network, demonstrating how evolved 

mutation operaactors may 'over-fit' to training 

difficulties. One mutation operator (GP1) 

consistently performed the best, achieving the best 

final generation outcome across all the test 

networks, demonstrating the method's promise. 

Interestingly, the examination of the GP tree shows 

that GP1 converges more slowly than many of the 

GP developed mutation operators, suggesting it has 

a greater exploration capability and, thus, better 

outcomes. 
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