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ABSTRACT

Z-coordinate, defined as the residue's distance from the center of the biological membrane, is a crucial 

structural property of -helical transmembrane proteins (-TMPs). Neither experimentally solved nor 

computationally anticipated -TMP structures can z-coordinate prediction allows us to partially describe -TMP 

structures based on their sequences, which helps with function annotation and drug target finding, and so 

meets the needs of the relevant study fields. To enhance prediction accuracy and provide a useful tool, we 

suggested a deep learning-based predictor (TM-ZC) for the z-coordinate of residues in -TMPs. TM-ZC trained a 

convolutional neural network (CNN) regression model using the one-hot code and the PSSM as input features. 

The experimental findings showed that TM-ZC was an effective predictor that is both easy to use and quick to 

run, with respectable results: an average error of 1.958, a percent of prediction error within 3 of 77.461%, and 

a correlation coefcient (CC) of 0.922. We went on to explore how the TM-ZC predicted z-coordinate may be 

helpful, and we discovered that it has a high degree of consistency with topological structure and improves the 

prediction of surface accessibility. 

INDEX TERMS 

convolutional neural network (CNN), regression, Z-coordinate of residues, -helical transmembrane protein. 

INTRODUCTION 

The majority of transmembrane proteins (TMPs) 

consist of -helical structures (TMPs). Using data 

from UniProt [1], we can see that More than 

ninety-eight percent of all TMPs are TMPs. Signal 

transduction [2, 3], nutrition or drug reception [3, 

4], immunological response [4, 5], and enzyme 

activation [5, 6] are just a few of the many 

functions that -TMPs play in fundamental 

physiology and pathology. Diseases as diverse as 

autism [6], epilepsy [7], and cancer [8][11] may 

have their origins in -TMP malfunction. Therefore, 

more than 50% of all TMPs aim towards 
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The effectiveness of drug development depends 

on a thorough understanding of the structure of 

existing medications [12], [13]. Despite their vital 

biological roles, however, determination. 

Due to ongoing technological challenges, only 

around 5% of -TMPs have had their high-resolution 

structures identified. 

As a result, various structural descriptors extracted 

from original sequences are being used to boost 

TMP-related research efforts in the present. 

Topology structure, surface accessibility, and z-

coordinate are all examples of low-resolution 

structural descriptors that may complement high-

resolution structural data for learning about -

TMPs. Many novel approaches to illumination 

have been developed in recent years and have 

made significant progress. This includes VOLUME 8 

and the like. 

With the goal of improving upon previous 

techniques for predicting the topological structure 

of -TMPs [14, 15], S. H. Feng et al. rst created a 

multiscale deep learning protocol (MemBrain 3.0) 

that has two distinct layers of neural networks 

modular components; transmembrane helix 

prediction and orientation prediction [16]. In a 

similar vein, various approaches have been 

developed to estimate the surface accessibility of -

TMPs, with some of them achieving very good 

performance [17], [18]. For instance, in our prior 

work [19] we introduced a deep learning-based 

predictor (TMP-SSurface) that used one-hot codes 

and PSSM as input characteristics to create a 

hybrid of the Inception and the CapsuleNet. 

The distance from a residue in -TMP to the 

membrane's geometric center is defined as the 

residue's Z-coordinate [20]. 

Z-coordinate, like topological structure, reflects 

the connection between the residue and the 

membrane, but it does so via continuous 

numerical measurement. Since ligand-binding and 

protein-protein binding sites are usually in very 

particular places on transmembrane, water-

soluble, or junction regions, the z-coordinate is 

significantly connected with them. Topology 

prediction [21], structural classication [22], burial 

status prediction [23], and many more fields may  

all benefit from the anticipated z-coordinate [24], 

[25]. Computational approaches that accurately 

anticipate the z-coordinate of residues in -TMPs 

are not only a necessary step towards structure 

identification, but also have the potential property 

of aiding in function annotation, drug target 

research, and other related issues. [21], [26], [27]. 

But research into the z-coordinate has lagged 

behind that of topological structure and surface 

accessibility. 

Only one z-coordinate predictor, ZPRED [20], has 

been published in the last decade; it combines an 

Artificial Neural Network (ANN) with a Hidden 

Markov Model (HMM) and takes sequential 

information as inputs. If you're looking for the 

original work on z-coordinate prediction, ZPRED is 

it, however its website has since been taken down. 

In order to further -TMP studies, a z-coordinate 

predictor that is both accurate and fast is required. 

The number of buildings that contain -TMPs has 

grown by a factor of more than 10 in the previous 

15 years. The study might benefit from additional 

data, and the deep learning approach offers a 

fresh way to build a more effective predictor that 

is easier to implement and runs more quickly 

without sacrificing accuracy. 

In this paper, we put forward a deep learning-

based predictor (TM-ZC) for the z-coordinate of 

residues in -TMPs. TMZC trained a convolutional 

neural network (CNN) regression model using the 

one-hot code and the PSSM as input features. 

Experiments showed that TM-ZC performed well. 

The CC was 0.917, the mean error was 1.865, and 

the percentage of incorrect predictions within 3 

standard deviations was 76.703. Additionally, we 

examined the potential of the TM-ZC predicted z-

coordinate in solving the issues of surface 

accessibility prediction and topological structure 

prediction. By setting a lower limit on the z-

coordinate predicted by TM-ZC, we sought to 
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separate the transmembrane residues from the 

non-transmembrane residues. 

The z-coordinate predicted by TM-ZC is well 

correlated with the topological structure, as 

proved by the experiments. Predicting surface 

accessibility requires. 

Additionally to our earlier study, we have included 

the TM-ZC projected z-coordinate in order to 

foretell the surface accessibility of -TMPs. 

Predicted z-coordinates from TM-ZC improved 

prediction performance experimentally. 

http://icdtools.nenu.edu.cn/TM-ZC provides a 

dependable webserver that anybody is welcome to 

use. 

II. MATERIALS AND METHODS 

BENCHMARK DATASETS 

In 2005, a dataset of 101 non-homologous chains 

from 46 complexes was produced for ZPRED's 

usage. 

A more comprehensive benchmark dataset is what 

we think important urged. Most researchers rely 

on the information found in the Protein Data Bank 

of Transmembrane Proteins (PDBTM) [28]. To 

generate it, we ran the TMDET algorithm [29] over 

every entry in the PDB. PDBTM data shows that in 

the last 15 years, the number of -TMPs has grown 

by a factor of more than 10. From PDBTM, we 

retrieved a total of 3820 complexes including 

13,209 -TMP sequences (version: 2019-05-10). 

Getting rid of sequences that use atypical amino 

acid residues Short sequences of less than 30 

residues were omitted since they were always 

interpreted as peptides. To mitigate homology 

bias's deleterious effects [30], we ran CD-HIT with 

a 0.3 sequence identity cut-off to cluster the 

remaining proteins, and then we extracted the 

longest sequences from each cluster. After initial 

processing, 851 -TMPs containing a total of 

223,310 residues were recovered. To verify TM-

robustness, ZC's a random sample of 50 sequences 

was chosen and used in an independent test (ZC-

test50). Only 50 sequences were utilized as the 

validation dataset (ZC-valid50), while the other 

751 sequences were used to construct the training 

and tuning datasets for the prediction model (ZC-

train751). In ten-fold cross validation, we repeated 

the procedure of choosing the validation dataset 

10 times. When training the models, the results 

shown below are an average of the results from 10 

rounds of cross-validation on each of the sub-

models. All datasets utilized for this study may be 

found in the Additional Files 

CALCULATION OF Z-COORDINATE 

Z-COORDINATE CALCULATION 

The residues' PDB coordinates must be rotated 

and shifted from their original positions to account 

for relative membrane and protein-specific 

locations. The value of the z-coordinate as seen 

may be determined using Formula 1: 

 

A is the matrix that rotated the protein around the 

origin, and [xi; yi; zi] are the coordinates of the 

alpha-carbon atom of the ith residue as they were 

in the PDB les downloaded from PDBTM 

antiparallel to the membrane's surface. (bx), (by), 

(bz) is a transporter that delivered the protein to 

its membrane destination. 

TMDET[29] was the source for both A and bx ; by ; 

bz. The membrane's nucleus is located at a z-

coordinate of 0. 

Then, two threshold cutting phases were 

conducted, mirroring the procedure of ZPRED: 

First, we ignored orientation and only looked at 

the distance separating the residues from the 

center of the membrane (z0 I which limited the 

threshold from.1;C1/ to [0;C1). The formula for the 

absolute value is:V 

 

Z-coordinate values between 0 and 5 were 

designated as belonging to a core hydrophobic 

area, while all values over 25 were designated as 

non-transmembrane residues. Observed TM-ZC z-

coordinate labels were only those that fell within 
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the range [5; 25]. You may figure it out using the 

formula:V 

 

Encoding of Protein Sequences (C.) 

1) CONSERVATION BY EVOLUTION (PSSM) 

Particular genetic traits of proteins have been 

rising in popularity, especially among proteins with 

similar structures. High-conservation protein 

fragments have been shown to be directly 

connected to the proteins' structural or functional 

requirements [31, 32]. Among the useful 

descriptors derived from multiple sequence 

alignment is the position-specific score matrix 

(PSSM) [33]. PSSMs were determined by running 

PSI-BLAST [34] on the UniRef50 database 

(published on October 16, 2019) with an e-value 

cutoff of 0.001 and 3 iterations. Protein secondary 

structure motif (PSSM) defined as 20 L matrix 

 

where Pi;AAj is the PSSM element value, where 

PSSM is the probability that AAj appears at 

position I of the given protein in a multiple 

sequence alignment. 

The length of the protein, denoted by L. In the next 

step, we utilized the logistic function to transform 

each PSSM value into the interval [0, 1]: 

 

2) SINGLE-USE CODE 

For each residue in a protein sequence, one-hot 

coding is employed to express its kind using a 

sparse encoding scheme. This is the single most 

simplest approach of describing a protein's 

sequence, using just the 20 standard amino acids 

and their relative positions. Deep learning-based 

protein function predictions have shown this to be 

a useful characteristic [35, 39]. A 20 L matrixV 

represents the protein's one-hot coding. 

 

where ORi;AAj represents the element's value of 

one-hot code. 

Ri is the type of residue on position i. AAj is the 

type of 20 standard amino acids. ORi;AAj D 1 if Ri D 

AAj; ORi;AAj D 0 if Ri 6D AAj. L represents the 

length of the protein. ORi;AAj is the one-hot code 

for that element. 

Ri represents the residue type at position i. There 

are 20 typical amino acids in AAj. If (Ri = AAj), then 

(ORi;AAj = 1) ORi:AAj=D0 if Ri:6D The protein's 

length, denoted by the letter L, is AAj. 

D. ORIGINAL MODELING 

To put it simply, a convolutional neural network 

(CNN) is a feedforward neural network in which 

the neurons are able to reflect the information 

that is sent into them. 

 

information around the area covered by the 

convolution kernel. In each iteration, the network 

was trained using the training dataset, and then its 

performance was evaluated using the validation 

dataset, which was then utilized to provide 

feedback for the training process in the following 

iteration. The need for human-created 

characteristics is eliminated, and instead, relevant 

traits may be gleaned straight from raw data. CNN 

excels in the fields of image/video recognition [42], 

natural language processing [43], and medical 

diagnosis [44]. CNN's efficacy has led to its 

widespread use in bioinformatics, particularly in 

tasks like super-enhancer prediction [45] and drug-

disease association prediction [46]. Our aim in this 
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study was to simplify the underlying prediction 

model. 

Our solution was to build a simple network 

structure. Figure 1 depicts the layout of the 

prediction model. For activation, we used ReLU, 

and each convolution layer included 256 kernels of 

size 3, stride 1, and ReLU. 

Maximal pooling was used on all 256 kernels 

across all pooling layers, and the kernel size and 

stride were also set to 2. Features were extracted 

from the data using a single convolution layer in 

this model. 

 

in its raw form, the feature matrix was encoded. 

After that, a single layer of max pooling was 

executed. Two convolution layers, a max pooling 

layer, another pair of convolution layers, and 

 

Each layer of the max pooling procedure was 

executed in turn. The feature matrix size was 35, 

which was insufficient to run the subsequent 

layers. Consequently, we added a zero-padding 

layer to the features matrix to increase their size 

from 3 by 7 to 20 by 20. After that, a maximum 

pooling layer and a pair of convolution layers were 

executed. Currently, feature extraction is 

performed using 256 x 1 3 matrices. We lined 

them up, and then ran a neural network with all of 

its connections active. Seven hundred and sixty-

eight neurons make up the input layer, 256 

neurons are in the hidden layer, and a single 

neuron is found in the output layer. 

With this prediction, we took into account the 

potential presence of an output neuron-related 

target residue. 

EVALUATION OF WORK PRODUCTIVITY 

Mean absolute error, Pearson correlation 

coefficient, and percentage of correct findings (P3) 

were used to evaluate TM-prediction ZC's 

performance. The mean absolute error (MAE) is 

the sum of the differences between the calculated 

and measured z-coordinates of all residues. The 

lesser the MAE number, the greater the 

performance. Its range was [0, 1]. 

The coefficient of determination (CC) displays the 

linear relationship between the calculated and 

measured z-coordinate. The closer the CC was to 1 

in the range [1, 1], the better it performed. The 

optimum prediction ratio, P3, is the threshold 

taken from ZPRED. Generally speaking, the bigger 

the ratio was, the better it performed, with a 

range of [0%, 100%]. 

 

 

 

Nx and Ny are the respective median values for the 

observed and anticipated z-coordinates of the ith 

residue, respectively; L is the total number of 

residues. Njyi�xij<3Å quantifies the fraction of 

residues for which the prediction error is below 3. 

III. CONCLUSIONS AND RECOMMENDATIONS 

PRODUCT FEATURE ANALYSIS 

We conducted an ablation research on features to 

learn more about the impact of various types of 
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features and their role in the prediction model. 

There are three distinct models since we used the 

one-hot code, the PSSM, and both. 

TABLE 1 demonstrates that PSSM is superior than 

one-hot code. 

The phenomenon exemplifies the tight connection 

between protein structure and evolutionary 

conservation. Although the model's performance 

suffered when employing just the one-hot code 

feature, it improved when combined uring 

traininwith the PSSM feature. 

B. IMPACT OF WINDOWSIZE 

In this study, we adopted a sliding window 

method, and we found that the prediction 

performance of TM-ZC was very sensitive to the 

value of the window size. We experiment with a 

range of window sizes, from 15 to 31, with a step 

size of 2. How well TM-ZC was able to predict on 

the validation dataset dg 

 

 

TABLE 2 shows the results of experimenting with 

various window widths. 

TM-performance ZC's rose steadily as the window 

size increased, peaking with the value of size of 

window topped out at 25. Consequently, in all our 

tests, we used a window size of 25. 

C. THE RESULT OF SLASHING THE THRESHOLD 

The original residue coordinates recorded in the 

PDB data were rotated and relocated according to 

the relative locations of the protein and the 

membrane, as detailed in "Section II-BCalculation 

of Z-coordinate." Two threshold-cutting iterations 

were then carried out. In the rst stage, we reduce 

the threshold from.1;C1/ to [0;C1] using the 

absolute value. The second process set a lower 

bound for the value, between [5 and 25]. After 

obtaining three sets of training labels with varying 

cutoffs, three distinct models were developed. 

TABLE 3 shows how well these models performed 

on the validation dataset (ZC-valid50). 

The model trained with the original labels and a 

threshold of.1;C1/ clearly underperformed, 

whereas the other two models showed substantial 

improvement. 

As a potential explanation for this phenomena, 

there is one that has been proposed: 

It is challenging for the prediction model to 

determine the link between the characteristics and 

the labels for residues that are symmetrical around 

the membrane center since they always share the 

same attributes but have opposing labels. Another 

observation is that models trained on labels with a 

threshold of [5; 25] performed the best. 
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Figure 2 displays the TM-effectiveness ZC's in 

terms of (a) MAE value and (b) CC value, 

respectively. From (a), we can see that the average 

MAE across 10 models is 2.215, with a standard 

deviation of 

 

each sub-mean model's absolute error and its 

mean value are shown on the label. In (b), we see 

that across 10 models, the average CC is 0.915; the 

difference between each sub-CC model's and the 

mean is shown as the label value. Figure 2 shows 

that TM-performance ZC's was consistent 

throughout all cross-validation tests. 

The sole predictor is ZPRED, thus it's important to 

compare results with it. To test the TM-efficacy, 

ZC's we compared it to ZPRED. 

Comparison of the mean absolute error (MAE) 

between ZPRED and TM-ZC in various z-coordinate 

locations is shown in Fig. 3. It was clear that, in 

terms of performance, TM-ZC was superior than 
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ZPRED throughout the board, but notably at the 

low end of the z-coordinate. 

The residue is in the hydrophobic transmembrane 

region if the z-coordinate is low. It showed that 

TM-ZC worked well for transmembrane residues. 

In the section [19:5; 24:5], TM-benefits ZC's were 

obscured and it performed worse than ZPRED. This 

demonstrates the necessity for further refinement 

of TM-prediction ZC's ability for residues located in 

the junction region of the membrane surface. 

 

To see how ZPRED and TM-ZC stack up against one 

another in terms of overall prediction 

performance, please refer to TABLE 4. Clearly TM-

ZC did better than ZPRED. A decrease in the MAE 

of More than 28% more results had an error of 3 

or less (P3), and the Pearson correlation coefficient 

(CC) was raised from 0.0 to 0.1, for a total increase 

of around 43%. 

D. CASE STUDIES 

To further prove how useful TM-ZC is, we 

conducted case studies. Examples are taken from 

ZC-test50, with 6EU6 A and 5L25 A being selected. 

The protein 6EU6 A was isolated from Escherichia 

coli and has eleven transmembrane domains. ATP, 

Dodecyl-Alpha-D-Maltoside, and other ligands bind 

to it since it is their target. Saccharomyces 

Cerevisiae 5L25 A is a ten-transmembrane protein. 

It's crucial to anion exchange and borate transfer. 

As shown in Fig. 4, the outcomes of the predictions 

for both proteins. 

In Fig. 4: (a) depicted the z-coordinate that TM-ZC 

predicted for 6EU6 A, with darker colors indicating 

greater z-coordinate values. In (b), the z-

coordinate curve value, the predicted value using 

ZPRED, and the predicted value using TM-ZC, all 

for 6EU6 A. Similar to (a) and (b), (c) and (d) 

depicted the data of 5L25 A. (b). 

From (a) and (c), it's clear that TM-anticipated ZC's 

z-coordinate is in good agreement with the data. 

In addition, (b) and (d) confirm that the TM-ZC 

projected value curve closely ts the actual value 

curve, making it superior than ZPRED. 

G. THE TOPOLOGICAL STRUCTURE IS CORRELATED 

WITH THE Z-COORDINATE 

The residue topological structure of TMPs is 

intimately related to the z-coordinate. By setting a 

lower limit on the z-coordinate predicted by TM-

ZC, we sought to separate the transmembrane 

residues from the non-transmembrane residues. 

Experiments conducted on the ZC-test50 dataset 

showed that a threshold of 14.5 resulted in the 

maximum accuracy (79.268%). Transmembrane 

residues were defined as those having a z-

coordinate less than or equal to 14.5. Since the 

biological experiment demonstrated that the 

mean thickness of the membrane is around 30, 

this would indicate that the mean thickness of the 

membrane was 14:5 2 D 29. Because of this, there 

is a robust association between topological 

structure and z-coordinate, and the threshold of 

TMZC predicted z-coordinate is consistent with 

facts. 

H. Improvements in surface accessibility prediction 

enabled by TM-ZC 

The TM-ZC predicted z-coordinate has a high 

degree of agreement with the topological 

structure, and it may also improve predictions of 

the surface accessibility of -TMPs residues. Once 

upon a time, we put out a predictor (TMPSSurface) 

for predicting residues' relative accessible surface 

areas (rASAs) in -TMPs [19]. TMP-SSurface was a 

deep learning-based regression technique that 

used as input features one-hot code, terminal ag, 

and PSSM. To further validate TM-use, ZC's we 

included the algorithm's projected z-coordinate as 

an extra feature and were pleased to see that the 

CC value climbed from 0.581 to 0.604. The results 
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of the experiment demonstrated the existence of a 

connection between z-coordinates and rASA. 

Final Thoughts 

In -TMPs, the z-coordinate of a residue is defined 

as the residue's distance from the membrane's 

geometric center. It's a useful structural 

description that has a strong relationship to the 

known functional domains of -TMPs. ZPRED is the 

only existing predictor for this issue, hence it 

obviously needs to be refined. Predicting the z-

coordinate of residues in -TMPs may be difficult, 

thus we've suggested a deep learning-based 

predictor (TM-ZC). Using one-hot code and PSSM 

as input characteristics, TM-ZC is a straightforward 

CNN-based predictor. With an MAE of 1.958 and a 

CC of 0.9, TM-ZC performed well. 

A prediction error of 77.461% was found to be 

within a 3-standard-deviation margin of error for a 

0.922 value. In experiments, we observed the 

impact of two feature types and found that PSSM 

features were more effective. 

We also checked the accuracy of the predicted z-

coordinate from TM-ZC and its applicability to the 

issues of surface accessibility prediction. 

The results of these experiments show that TM-ZC 

may be a useful tool for addressing these issues. 

We have faith that TM-ZC will be useful in future 

studies of other types of transmembrane proteins. 
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