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Biology Sequence Clustering Via 

Phylogenetic Trees 

ANSHUMAN MISHRA 

Abstract

For many bioinformatics tasks, it is necessary to group comparable sequences together. Sequences tend to group 

together because of the evolutionary links among them. And yet, despite this evidence and the obvious ways in 

which a 

Despite the fact that a phylogenetic tree may be used to create groups, most sequence clustering tools instead 

employ pairwise sequence distances to do their analyses. We contend that tree-based clustering is not being fully 

used because of the development of large-scale phylogenetic inference. For each given tree, we describe a class 

of optimization problems that, when solved, provide the fewest possible clusters while satisfying specified 

heterogeneity requirements. We focus on three distinct restrictions, which limit either (1) the size of each 

cluster, (2) the total length of its branches, or (3) the length of chains of pairwise distances. For two of the three 

requirements, the methods have been known for some time in the theoretical computer science literature. The 

time required to solve these issues grows linearly with the size of the tree. Using these techniques, we develop a  

program called TreeCluster and evaluate it on three different uses: clustering of OTUs in microbiome data, 

clustering of HIV transmission, and divide-and-conquer multiple sequence alignment. We demonstrate how 

TreeCluster's use of tree-based distances produces more internally consistent clusters than competing methods 

and boosts the efficiency of subsequent applications. Check out https://github.com/niemasd/TreeCluster to 

download TreeCluster. 

Introduction 

Homologous molecular sequences may exhibit 

striking resemblance across species and even 

within the same genome owing to their common 

evolutionary history. Due of these commonalities, 

several applications have begun by classifying a 

wide variety of sequences into high-similarity 

sequence sets clustered for further processing. 

Clusters have varying, context-specific meanings. 

Operational Taxonomic Units (OTUs) are used as 

part of the standard process for evaluating 16S 

microbiome data [1-3]. These are groups of closely 

related sequences that do not deviate beyond a 

particular threshold. 

One such topic where the standard method is to 

infer causality is HIV transmission inference 

cluster HIV sequences from various people 

depending on how similar they are to one another 

(again, using a threshold), and then utilize these 

clusters as surrogates for disease transmission 

hotspots [4, 5]. 

Homologous similarities stem from their shared 

evolutionary histories. 
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Phylogenetic trees are a useful tool for displaying 

sequence data. Recent approaches can estimate 

approximate maximum-likelihood (ML) 

phylogenetic trees in sub-quadratic time, allowing 

them to scale to datasets of even millions of 

sequences [8]. This allows the phylogenetic tree to 

be inferred from sequence data [6, 7]. In addition, 

utilizing divide-and-conquer techniques [9, 10], 

precise alignment of datasets including hundreds of 

thousands of species is now feasible (a 

precondition to most phylogenetic reconstruction 

approaches). 

Current sequence clustering algorithms typically 

accept as input pairwise distances between 

sequences but do not make use of phylogenetic 

trees. The popular UCLUST [2] algorithm, for 

instance, looks for a clustering that maximizes the 

Hamming distance between cluster centers while 

minimizing the Hamming distance of sequences to 

the cluster centroid. Several alternative clustering 

approaches, such as those for large protein 

sequence databases [13] and gene family 

circumscription [11, 12], have been developed for 

specific applications. 

There are two possible benefits of using 

phylogenies for clustering. I Phylogeny-based 

grouping has the ability to represent not just 

evolutionary distances (i.e., branch lengths) but 

also connections (i.e., the tree topology), since 

phylogenies explicitly strive to infer the 

evolutionary past. Keep in mind that the lengths of 

the branches in a phylogeny are statistically 

rigorous "corrections" of sequence distances based 

on a model [7, 14], and therefore they may more 

accurately represent the degree of divergence 

between the species. ii) The tree may be inferred 

using subquadratic techniques, which can enhance 

performance and scalability by removing the 

requirement to calculate all pairwise distances. 

Furthermore, a phylogeny is frequently easily 

accessible since it must be inferred for reasons 

other than clustering. Despite these possibilities, 

however, no known systematic approach to 

phylogeny-guided grouping has been developed. 

ClusterPicker [15] was developed for investigating 

HIV transmissions; it groups sequences based on 

distances using the phylogenetic tree as a 

constraint; nevertheless, it still use sequence 

distances rather than tree distances and scales 

cubically with respect to the number of sequences. 

In the case of an ultrametric tree, in which the 

distances between nodes on the tree are all the 

same, it is straightforward to use the tree to cluster 

sequences based on their evolutionary relationships 

(Fig 1A). By roots the tree at its singular midway 

and continuing as previously, this method naturally 

applies to bare ultrametric trees as well. However, 

phylogenetic trees that are derived from data are 

seldom ultrametric. Inferred trees may not be 

ultrametric even if the real tree is ultrametric, since 

different creatures might develop at different rates 

of evolution. When working with a non-ultrametric 

(and maybe unrooted) tree, it might be difficult to 

determine how to effectively cluster sequences (Fig 

1B). 

Tree-based clustering may be approached in a 

number of ways, one of which is as an optimization 

issue. A common style of issue definition goes like 

this: "discover the minimal number of clusters such 

that specified criteria restrict each cluster." 

Interestingly, the theoretical computer science 

community has tackled at least two variants of 

similar optimization issues since the 1970s, often in 

the context of proving more difficult theorems. The 

tree partitioning issue entails slicing a tree into the 

least number of subtrees possible, with the goal of 

satisfying a certain bound on either the maximum 

route length between two nodes in the same subtree 

[17] or the total weight of all edges in each subtree 

[18]. Although simple linear-time methods exist for 

solving these issues perfectly, it is our impression 

that bioinformaticians mostly disregard them. 

In this paper, we propose a quick and efficient tree-

based clustering technique as a solution to a 

number of bioinformatics problems. In this work, a 

new class of tree-partitioning algorithms is 

presented. 
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difficulties and provide linear-time descriptions of 

solutions for three examples (two of which match 

to the aforementioned max and sum problems with 

known methods). In the next section, we 

demonstrate how tree-based grouping might 

enhance subsequent biological investigations in 

three distinct applications: operational taxonomic 

unit (OTU) definition for microbes, cluster analysis 

of HIV transmission, and divide-and-conquer 

multiple sequence alignment. 

Substances and Techniques 

Algorithms 

Labeling the issue at hand. Consider the unrooted 

binary tree T = (V, E), which is a directed acyclic 

network with vertices V (of either degree 1 or 3), 

weighted edges E, and a leafset L V. It is common 

to abbreviate the notation for the distance between 

two leaves u and v on T to dT (u, v), however 

where it is not obvious, we will use the shorter 

notation d(u, v). An edge's "weight" (i.e., its 

"branch length") is expressed by the symbol "w" 

when the pair of vertices (u, v) is considered (u, v). 

By severing a certain set of edges C E, we may 

define a clustering of the tree's leaves, or T. 

If we remove an edge set C from E and assign the 

leaves of each of the resulting linked components 

to a set Li (note: N |C| + 1), then we have a 

partition L1, L2, LN of L that is an acceptable 

clustering. 

Let fT: 2L! R represent a function from a subset of 

the leafset L to a real integer, and assume that tree 

T is a tree. fT is often specified as a function of the 

edge weights in a cluster, and its goal is to quantify 

the variety of elements at the leaves inside each 

cluster. A good example is the diameter of a subset: 

fT = maxu,v2L dT. (u, v). We construct a class of 

tasks with the objective of reducing the total 

number of clusters while imposing fT-defined 

restrictions on each cluster. In formal terms: 

Instance 1: A Definition (Min-cut partitioning 

problem family). Find the smallest cardinality (N) 

acceptable partition L1...LN of L satisfying 8i, fT 

for a given tree T with leafset L and a real integer. 

Requiring all pairwise distances inside a cluster to 

be less than a specified threshold is a logical 

technique to reduce variety within the cluster. 

As a second definition (Max-diameter min-cut 

partitioning problem). When fT = max u;v2L d u; 

v, the Min-cut partitioning issue (Definition 1) is 

referred to as the Max-diameter min-cut 

partitioning problem. 

Possible drawbacks of max-diameter-min-cut 

partitioning include its sensitivity to outliers (the 

maximum distance inside a cluster is not always 

representative of the true distance between nodes). 

the cluster's level of variety. Here's an obvious 

option that might help control for extreme cases: 

Third Definition (Sum-length min-cut partitioning 

problem). To solve the Min-cut partitioning issue 

where T|L is the tree T limited to a subset of leaves 

L, and fT 14 X u;v2edgesTjL wu; v. This problem, 

which is also known as the Sum-length Min-Cut 

Partitioning Problem, is NP-complete. 

In addition, we investigate a third issue, the 

significance of which we shall explain in detail: 

4. Defined (Single-linkage min-cut partitioning 

problem). When fT = max S L f min u2S;v2L S du; 

vg, we refer to the Min-cut partitioning issue as a 

Single-linkage min-cut partitioning problem. 

Next, we will demonstrate algorithms that solve the 

Max-diameter, Sum-length, and Singlelinkage min-

cut partitioning issues in linear time. Two of the 

three algorithms, max and sum, have previously 

been defined in the theoretical computer science 

literature, and all three employ versions of the same 

greedy algorithm. However, we restate the answers 
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in the same terms and provide different 

justifications for their validity. 

The Max-diameter min-cut problem can be solved 

in linear time. Initially, Parley et al. [17] provided a 

linear-time solution (with all edge weights equal to 

1) to the Max-diameter min-cut partitioning issue. 

We propose a different argument for Algorithm 1, 

which is similar to the one given by Parley et al. 

(with the addition of branch lengths). To is an 

arbitrary rooting of T at o, and it is this form that 

the algorithm acts on. The subtree with root u is 

referred to as U. Let's name U's offspring Ul and Ur 

and their family tree Ul and Ur. Whenever it is 

obvious, we write wl for w(u, ul) and wr for w(u, 

ur). 

First Algorithm: Time-consistent linear solution to 

Partitioning by maximum diameter minimum cut 

Input: A tree For a given value of (Voltage, 

Energy), we need to meet a threshold of 1 B(v) 0 in 

order for v 2 V 2 to equal (U, E). Internal node 

traversal in post-order 2, If B(ul) + wl + B(ur) + wr 

>, go to step 4, and if B(ul) + wl B(ur) + wr >, 

proceed to step 3. 

We characterize B(C, u) as the distance from u to 

the most distant linked leaf in U in the clustering 

specified by C, for a cut set C of the tree. The 

algorithm does a bottom-up tree traverse, and at 

each node u it encounters, it has the option of 

severing one of the child edges leading to it. 

Because of this, we create a clustering current Cu at 

each step and denote it by the abbreviation B(u) 

(Cu, u). 

Once we reach u, additional connections between 

the two trees Ur and Ul will emerge. The longest of 

such routes is B(ul) + wl + B(ur) + wr in length. 

When this number is more than the threshold, we 

break either (u, ur) or (u, ul), whichever results in 

the smallest value for B. (u). To emphasize, B(u) is 

always well-defined since the method never cuts 

more than one child edge from any node. 

Assume for the sake of this theorem that the goal 

function, denoted by A(o), is the least number of 

clusters under U with a diameter smaller than. The 

first algorithm finds the clustering that minimizes 

A(o) given the tree To as its root. Furthermore, the 

algorithm selects arg minC B from all feasible 

clusterings of this kind (C, o). 

Let C0 be the cut set generated from Algorithm 1 

when applied to a tree T with any rooted To. The 

partitioning issue with Max-diameter min-cut is 

ideally solved by set C0. 

Both the theorem's proof and the corollary's proof 

may be found in the S1 Appendix. 

Partitioning issue with minimum sum length has a 

linear solution. Kundu et al. [18] previously 

described a linear-time approach that divides trees 

into clusters with total node weights less than or 

equal to. To get an answer to the Sumlength 

To solve the min-cut partitioning issue, we provide 

a modified version of the original technique that 

operates on edge (rather than node) weights and is 

dedicated to binary trees. The Sum-length min-cut 

partitioning issue is best solved by Algorithm 1 

with only two tweaks (see Algorithm A in S1 

Appendix). As a first tweak, we use the new 

auxiliary variable B(C, u) to represent the 

aggregate of edge weights for all ancestors of u at 

the current processing step of the algorithm. Two, 

let's say we're doing a bottom-up traversal of the 

internal nodes of To, and for node u, w.l.o.g, we're 

going to allow B(ul) + wl B(ur) + wr). We sever the 

edge if the total of the combined subtree's branch 

lengths is more than (u, ul). When calculating B(u), 

this algorithm uses a different formula from the one 

found in Algorithm 1: B(ul) + wl + B(ur) + wr. The 

accuracy of the algorithm is shown in S1 

Appendix, using a pattern similar to that of the 

proof for Algorithm 1. 

Minimal cut tree partitioning with a single link. 

The issue of Single-linkage min-cut partitioning 

(Definition 4) is next, and it may be seen as a 

relaxation of the Max-diameter min-cut 

partitioning. The following definition will help 

explain why this is an issue. 

5. Defined (Single-linkage clustering). If there 

exists a chain H 14 c0; c1;... ; cm; cm1, with a = c0 

and b = cm+1 and for every 0 I m, we get d(ci, 

ci+1), then we say that the partition of L is a 

Single-linkage clustering. 

The result is that pairs of nodes are always placed 

in the same cluster if their distance is less than the 
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cutoff value (the rest follows from transitivity). 

Determination 4's fT is supported by the following 

result (proven in S1 Appendix). 

Optimal solutions to the Single-linkage min-cut 

partitioning issue (Definition 4) and the Single-

linkage clustering (Definition 5) are equivalent, as 

stated in Proposition 1. 

The Single-linkage min-cut partitioning issue may 

be solved in linear time, as shown by Algorithm 2. 

For each node u, the method uses post-order 

traversal to locate the nearest leaf in the left and 

right sub-trees of u, and then uses pre-order 

traversal to locate the nearest leaf outside the sub-

tree rooted at u. Then, it does a post-order traversal, 

cutting each child edge if the shortest path between 

the node and any leaf outside the node is longer 

than the threshold distance. The following theorem 

(with proof in S1 Appendix) establishes the 

algorithm's soundness. 

Procedure 2: SINGLE-LINKAGE Partitioning with 

a minimal cut distance using a single link 

Lower than [u] minimum 

Above[u] Postorder recursion of (1, v, u2) for If 

you're in L, it'll take you 4 minutes to finish Step 3. 

0; 5; 6; 6 min To the sub-minimum Under[ul] plus 

wl, minimum Below[ur] + wr); 7 for u 2 a 

sequential walk through the tasks on your To Do 

list; 8 if u 614 o, then 9 minutes To a degree greater 

than or equal to the minimum The minimum value 

is less than [below[s]] plus [w(v, s)]. For u 2, the 

post-order traversal of the internal nodes of For 11 

if minimum Subsequent to[ul]+(wl)+(min) In the 

range [ur] - wr > and min Subsequent 

to[ul]+(wl)+(min) 12 E E(u, ul) 13 if min 

Above[u]> then Lower than [ul] + (wl) + (min) 

Given that [ur] + wr > and min Less than[ur] + wr 

+ minimum If min [u]>above 14 E E(u, ur) 15 if 

min [u]>above Subsequent to[ul]+(wl)+(min) In 

the range [u] > and min The combination of 

"below" (ur) and "wr" (western) and "minimum" If 

(Above[u]) > (Tree), Phylogenetic tree-based 

clustering of biological sequences 

Partitioning issue with minimum sum length has a 

linear solution. Kundu et al. [18] previously 

described a linear-time approach that divides trees 

into clusters with total node weights less than or 

equal to. To get an answer to the Sumlength 

To solve the min-cut partitioning issue, we provide 

a modified version of the original technique that 

operates on edge (rather than node) weights and is 

dedicated to binary trees. The Sum-length min-cut 

partitioning issue is best solved by Algorithm 1 

with only two tweaks (see Algorithm A in S1 

Appendix). As a first tweak, we use the new 

auxiliary variable B(C, u) to represent the 

aggregate of edge weights for all ancestors of u at 

the current processing step of the algorithm. Two, 

let's say we're doing a bottom-up traversal of the 

internal nodes of To, and for node u, w.l.o.g, we're 

going to allow B(ul) + wl B(ur) + wr). We sever the 

edge if the total of the combined subtree's branch 

lengths is more than (u, ul). When calculating B(u), 

this algorithm uses a different formula from the one 

found in Algorithm 1: B(ul) + wl + B(ur) + wr. The 

accuracy of the algorithm is shown in S1 

Appendix, using a pattern similar to that of the 

proof for Algorithm 1. 

Minimal cut tree partitioning with a single link. 

The issue of Single-linkage min-cut partitioning 

(Definition 4) is next, and it may be seen as a 

relaxation of the Max-diameter min-cut 

partitioning. The following definition will help 

explain why this is an issue. 

 

The result is that pairs of nodes are always placed 

in the same cluster if their distance is less than the 

cutoff value (the rest follows from transitivity). 

Determination 4's fT is supported by the following 

result (proven in S1 Appendix). 

Optimal solutions to the Single-linkage min-cut 

partitioning issue (Definition 4) and the Single-

linkage clustering (Definition 5) are equivalent, as 

stated in Proposition 1. 

The Single-linkage min-cut partitioning issue may 

be solved in linear time, as shown by Algorithm 2. 

For each node u, the method uses post-order 

traversal to locate the nearest leaf in the left and 
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right sub-trees of u, and then uses pre-order 

traversal to locate the nearest leaf outside the sub-

tree rooted at u. Then, it does a post-order traversal, 

cutting each child edge if the shortest path between 

the node and any leaf outside the node is longer 

than the threshold distance. The following theorem 

(with proof in S1 Appendix) establishes the 

algorithm's soundness. 

 

 

The ideal solution to the Single-linkage min-cut 

partitioning issue is the partitioning determined 

using Algorithm 2. (Definition 5). 

Rooted trees must adhere to a clan limitation. To 

until point, we have been concerned mostly with 

uprooted trees. These options reasoned in part by 

the fact that most phylogenetic reconstruction 

techniques use timereversible theories of sequence 

evolution (such GTR [19]), which produce an 

unrooted tree. However, researchers have devised a 

number of approaches for rooting trees [20, 21], 

such as accurate and linear-time methods as MV 

rooting [16]. Each "monophyletic clade," or 

collection of things that comprises all offspring of 

their common ancestor, is a biologically relevant 

unit when a rooted tree is available. Because of 

this, it's possible that we'd want to force every 

grouping to be a clade. This "clade" restriction 

simplifies clustering since our methods can be 

simply modified to check whether each cluster is 

also a clade. To be more precise, both (u, ul) and 

(u, ur) need to be cut (instead of just the longer 

one) when B(ul) + wl + B(ur) + wr >, as in 

Algorithm 1. To solve the Max-diameter, Sum-

length, and Single-linkage min-cut partitioning 

issues under the clade constraint in linear time, we 

make a little tweak to the original algorithm. 

Sequence centered on a central point. Most 

sequencing-based clustering techniques provide a 

representative sequence for each cluster, which is 

then often re-used by the algorithm itself. We don't 

use representatives in our clustering method. On 

the other hand, if a representative is required for 

downstream. 

When it comes to software, you have options. The 

node that minimizes the variation of root-to-tip 

lengths, or the cluster's midpoint, may be located in 

linear time [16], and the representative leaf can 

then be chosen based on its proximity to the 

midpoint. 

The consensus sequence among all cluster 

sequences is another option (i.e., choosing the most 

frequent letter for each site). In certain cases, a 

consensus sequence might be used instead of one of 

the provided sequences as the central sequence 

[22]. Ancestral sequence reconstruction is a third 

possibility that we investigate in our findings. We 

begin by establishing a balancing point as the first 

node of each subtree specified by the cluster. The 

reconstructed root sequence is then used as the 

center of our maximum likelihood ancestral state 

reconstruction (ASR) analysis. 

Computer program called TreeCluster 

In a publicly accessible open source program called 

TreeCluster, we developed linear-time algorithms 

for the min-cut partitioning issue under 

Maxdiameter, Sum-branch, Single-linkage, and 

other clustering criteria, with and without clade 

restrictions. Inputs to TreeCluster include a newick 

tree and a threshold value; the program then 

outputs clusters in a text file. TreeCluster relies on 

the treeswift [23] package to perform tree 

operations quickly. 

Tree Cluster's three uses 

Although sequence clustering has various uses, in 

this study we focus on three of them. 

First use case: grouping OTUs. The issue is 

biological. Pipeline standards use operational 
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taxonomic units for microbiome studies based on 

16S sequences derived from community-wide 

samples (OTUs). The OTUs are the most fine-

grained degree of differentiation between species, 

and they are created by clustering sequences that 

have at least some amount of similarity (e.g., 97% 

similarity). 

When doing further studies like taxonomic 

profiling, taxonomic identification, sample 

differentiation, or machine learning, all sequences 

assigned to the same OTU are considered to belong 

to the same organism. Similarity thresholds are 

increasingly being used in place of biological 

species concepts. 

Additionally, OTUs comprised of clusters of 

similar sequences might provide some resistance 

against sequencing mistakes. 

Most uses of operational taxonomic units (OTUs) 

are "closed-reference," meaning that OTUs are 

created for reference sequences using techniques 

like UCLUST [2] and Dotur [3]. These techniques 

group sequences together based on a specified 

similarity criterion, often selecting a centroid 

sequence to stand in for an operational taxonomic 

unit (OTU). Sequence similarity is used to 

determine the relative distance between individual 

reads from a 16S sample and the OTUs, and the 

closest OTU is determined for each read. When all 

of the reads have been processed for all of the 

samples, an OTU table may be constructed in 

which the rows stand for the samples, the columns 

stand for the OTUs, and the cells stand for the 

frequency of the OTU in the sample. After this 

table is established, more research may be 

conducted. Such OTU-based studies may make use 

of one of many sizable reference datasets already 

available [26-28]. Among them is Greengenes [28], 

which has gained traction because to pipelines like 

Qiita [29]. 

In order to provide the most accurate representation 

of organisms, an OTU table should include OTUs 

that are as coherent as feasible (i.e., internally 

consistent). For our investigations, we will use 

Greengenes as our reference library and 

concentrate on closed-reference OTU selecting 

techniques. It is important to keep in mind, 

however, that there are other approaches that 

require the grouping of sequences for the same 

purpose, such as open-reference OTU picking and 

sub-operational taxonomic unit (sOTU) methods 

[30-32]. 

techniques already in use. Non-hierarchical 

clustering approaches [2, 34] are more popular than 

hierarchical ones [3, 33] for OTU clustering, 

perhaps because of the reduced processing load. 

For a given threshold, UCLUST dynamically 

determines a set of representative sequences by 

assigning query sequences into representative 

sequences (centroids) such that, ideally, the 

distance between each query and its assigned 

centroid is less than while distances between 

centroids is more than. CD-HIT [34] is another 

well-known method that uses a similar algorithmic 

strategy. UCLUST is a heuristic method, therefore 

the grouping it produces might be different 

depending on the sequence in which the queries 

were processed. CD-HIT is distinct from UCLUST 

principally because to its method of distance 

calculation. 

Partioning as a minimum-cut formulation. Using an 

estimated ML phylogeny and a threshold, we create 

OTUs by solving the Min-diameter, Sum-Length, 

or Single-linkage min-cut partitioning issues. To 

identify OTUs, we label each cluster in the 

resultant partition. 

Experiments. Tree-based OTU clustering is 

compared to UCLUST, which is employed by 

Greengenes [28] to determine its efficacy. Here, we 

apply TreeCluster to the phylogenetic tree of 

203,452 sequences from the Greengenes v13.5 

database using three different modes: max, sum, 

and single-linkage. Twenty criteria are used, 

including [0.005, 0.05] with a 0.005-step size and 

[0.05, 0.15] with a 0.01-0.01-step size. Because the 

number of clusters becomes substantially less over 

the 0.1 threshold compared to other approaches, we 

limit our exploration of single-linkage to that value. 

Clusters of operational taxonomic units (OTUs) are 

retrieved from the Greengenes database at sequence 

identity cutoffs ranging from 0.1 to 0.15. (i.e., 0.03, 

0.06, 0.09, 0.12, and 0.15). For each clustering 

L1,..., LN,' we calculate the weighted average of 

average pairwise distance per cluster (which we 

term cluster diversity for brevity) using the method 

below. 
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in where n is the total number of sequences that 

have been grouped together. We use two 

approaches to calculate the distance d(i, j) between 

two elements: route length on the inferred 

sequence-based Hamming distance and 

phylogenetic tree. All 203,452 sequences in the 

Greengenes database are aligned in a multiple 

sequence alignment, and the Hamming distances 

are calculated pairwise from this alignment, 

ignoring any site that has a gap in the pairwise 

alignment. Distinctly, a cluster 

Diversity is necessary but not sufficient for 

evaluating outcomes (singletons have zero 

diversity). Instead, we evaluate the variety of 

approaches at the same clustering depth. 

Consequently, we evaluate approaches for 

selections of the threshold where they produce 

(nearly) similar numbers of clusters as we vary. If 

two methods produce the same number of clusters, 

the one with less variability among those clusters is 

preferred. 

We use two criteria to assess the quality of a 

sample sequence set. Let's say we have a clustering 

L1,..., LN, and we want to designate all of the non-

singleton clusters as L1,..., LN0. One measure is 

the average distance from each cluster's center, or 

centroid, as defined technically as: 

 

in where g is a function that converts a cluster into 

a (representative) sequence. Maximum average 

distance to cluster representatives is the second 

measure, and it is technically defined as: 

 

Since a naive clustering that assigns many 

singletons would have a trivially low value for v 

and, we define these metrics on the set of non-

singleton clusters (near zero). 

The Greengenes database comes with a sample set 

of sequences that have already been calculated for 

you. There are a several different ways to choose a 

centroid for a TreeCluster, but we'll be looking at 

consensus and ASR. We use TreeTime [35] with 

the GTR model to conduct ASR. To estimate GTR 

model parameters, we align sample sequences from 

Greengenes using a multiple sequence alignment 

with a 15 percent identity threshold and run the 

alignment using RAxML 8 [36]. The Hamming 

distance between two items is calculated as d(i, j). 

Second Use: Analyses of HIV transmission 

clusters. The issue is biological. Due of HIV's high 

rate of evolution, phylogenetic connections 

between sequences may reveal its transmission 

history [37]. In order to effectively plan and assess 

HIV control measures, epidemiologists rely heavily 

on the results of phylogenetic studies of HIV 

sequences [38-42]. The data from these studies may 

provide light on questions of genetic relatedness 

[43], transmission histories [44], and inter-

population mixing [45]. Infer transmission clusters 

from pairwise sequence distances, track the growth 

of clusters over time, and prioritize clusters with 

the highest growth rates [46] are all examples of 

how transmission clustering is being used to predict 

at-risk individuals and the spread of epidemics 

using computational molecular epidemiology. As a 

result of this monitoring paradigm, two problems 

arise: (1) How may transmission clusters be 

inferred most effectively from molecular data, and 

(2) What is the best technique to infer transmission 

clusters? 

techniques already in use. We zero in on two 

widely-used programs that conduct this kind of 

grouping. The sequences, a phylogenetic tree, and a 

distance criterion are input into Cluster Picker [4]. 

It groups people into clusters where the largest 

pairwise sequence-based distance is below the 

threshold, the number of clusters is reduced, and 

each cluster determines the leaves of a clade in the 

tree. By comparing the Tamura-Nei 93 (TN93) 

distance [47] between two people u and v, HIV-

TRACE may determine whether or not they belong 

to the same cluster [5]. Each of these approaches 
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scales poorly with the number of sequences 

(quadratic and cubic, respectively). 

respectively (hours or days for HIV-TRACE and 

Cluster Picker to execute on huge datasets) 

(however, HIV-TRACE enjoys trivial parallelism 

and is fast in practice). 

Partioning as a minimum-cut formulation. 

Clustering in transmission is analogous to our own 

concept in that it includes cutting edges to produce 

clusters that must meet specific requirements (as 

specified by the leafsets produced by the cuts). In 

its original form, Cluster Picker is similar to our 

Max-diameter min-cut partitioning (with the 

additional constraint that clusters must define 

clades in the phylogeny), and HIV-TRACE is 

similar to our Single-linkage min-cut partitioning. 

Both methods use pairwise distances computed 

from sequences. 

Experiments. We initially use FAVITES [48] to 

simulate HIV epidemic data in order to assess the 

efficacy of clustering in preventing the spread of 

the virus. To mimic the HIV pandemic in San 

Diego from 2005 to 2014, we use the simulation 

parameters reported by Moshiri et al. [48]. While 

the initial parameter set had all HIV patients 

sequenced after the conclusion of the pandemic, 

producing an ultrametric tree in the unit of time, we 

changed this to sequence all patients at their first 

initiation of antiretroviral therapy (ART). We run 

simulations with two different parameters: when 

ART is assumed to be initiated and how extensive 

the underlying social interaction network is thought 

to be. There is a correlation between higher ART 

rates and lower degree requirements, with the 

former causing a delayed pandemic and the latter 

altering patterns of evolutionary branch length [48]. 

To access the full FAVITES parameter set, please 

refer to the appendices (List A in S1 Appendix). 

FastTree-II [8] is used to infer phylogenies from 

synthetic sequences under the GTR+ model, and 

then FastRoot [49] is used to root the trees using 

the MinVar approach. 

We infer clusters of transmission using HIV-

TRACE [5] and several clustering strategies in 

TreeCluster. Cluster Picker [4] took too long to 

execute, thus we couldn't utilize it. 

According to HIV-authors TRACE's [46], a 

clustering threshold of 1.5% is used. 

We employ a clustering threshold of 3% for Single-

Linkage TreeCluster because HIV-TRACE predicts 

pairwise sequencing distances under the TN93 

model, [47] which likely to be underestimates of 

phylogenetic distance computed under the GTR 

model. Since the Max-diameter clustering criterion 

in Cluster Picker is predefined at 4.5 percent [4], 

we employ this value for Max-Diameter 

TreeCluster (both with and without the Clade 

constraint). We just double the Max-diameter 

threshold and set it to 9% for usage in Sum-length 

TreeCluster (with and without the Clade 

constraint). We use these criteria as a starting point, 

but we also evaluate a broad variety of thresholds 

for each transmission clustering approach to ensure 

they are resilient. 

In order to identify the 1,000 most important 

people, we first assess cluster growth from year 8 

to year 9 of the simulation, and then rank them in 

decreasing order of respective growth. The risk 

associated with a certain person, u, is quantified by 

tallying the number of u!v HIV transmission 

episodes that occurred between the ages of 9 and 

10. We use the mean risk of the top one thousand 

people as a proxy for the efficacy of a particular 

clustering. It's preferable to aim for more than 

1,000 people since it means more transmissions 

will be stopped. We also provide the predicted risk, 

or the average number of transmissions throughout 

a population, based on a sample size of 1,000 

people chosen at random. 

Thirdly, we apply this technique to multiple 

sequence alignment by breaking it down into 

manageable chunks. Consider an example of an 

algorithm. 

Some researchers have even tried employing tree-

based clustering as a kind of divide-and-conquer 

for multiple sequence alignment (MSA). The tree 

structure may be used to partition sequences into 

subsets (i.e., clusters) that can be aligned 

independently and then combined to solve the 

MSA issue using the divide-and-conquer strategy. 

Iterating back and forth between tree and MSA 

inference allows for simultaneous inference of both 

the phylogeny and the MSA, and has been 

implemented in methods like as 
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PASTA [52] and SATe [50, 51]. The divide-and-

conquer strategy has been shown to be especially 

helpful for multi-stage aggregation (MSA) of 

extremely large datasets [9, 10, 50]. Not all MSA 

tools employ divide-and-conquer, and the use of 

min-cut partitioning in divide-and-conquer is the 

only thing we look at in this paper methods. Using 

PASTA [52], a scalable program that infers both 

MSAs and trees for ultra-large datasets (tested for 

up to 1,000,000 sequences), we analyze the 

efficacy of min-cut partitioning. 

Before clustering the sequences, PASTA constructs 

a rough phylogenetic estimate. PASTA's "divide" 

stage involves clustering the input sequences into 

subgroups, with the goal of reducing the diversity 

of each subset relative to the overall set. The MSA 

and/or tree are then inferred using a precise (but 

often computationally intensive) approach applied 

to the subsets. 

At last, a number of methods are used to combine 

the findings from the individual subgroups. Both 

the efficacy of the technique used to partition the 

tree into subsets and the accuracy of the base 

method used on the subsets and merging method 

contribute to the accuracy of the output [51]. 

PASTA first generates an alignment with the help 

of HMMs implemented in HMMER [53] and a tree 

with the help of FastTree-II [8]; it then performs 

several iterations (3 by default) of the divide-and-

conquer strategy described, using MAFFT [54] for 

aligning subsets and a combination of OPAL [55] 

and a technique based on transitivity for merging 

subalignments. 

At the conclusion of each iteration, FastTree-II 

produces a tree that serves as the starting point for 

the subsequent iteration. The approach has been 

proved to be very accurate on both synthetic and 

actual data, notably in terms of tree correctness, 

where it is almost on par with the accuracy 

achieved using the genuine alignment. It has much 

potential for development, however, in terms of 

alignment accuracy, especially on the most difficult 

datasets. 

Centroid-edge decomposition is the foundation of 

PASTA's clustering algorithm. The decomposition 

is defined recursively, starting with the guide tree 

from the previous iteration, and dividing the tree 

into two pieces of equal size (or as near to equal 

size as feasible). Once that's done, recurse on each 

subtree until there are no more than 200 leaves 

remaining. 

Partioning as a minimum-cut formulation. The 

edges must be cut and a constraint must be defined 

on the subsets for the centroid edge decomposition 

to be valid. However, it lacks optimization of any 

inherent objective function due to its procedurally 

created nature. The restrictions of the min-cut 

partitioning are similar to those of the centroid 

decomposition, but the result is different. 

Here, we reduce the number of subsets by solving 

the Sum-length min-cut partitioning problem with a 

threshold of = 2m 2. This is accomplished by 

setting all of the edge weights of the guide tree to 1. 

As a result, the requirements of this "max-size min-

cut partitioning" are the same as those of centroid 

decomposition, but it ensures finding the fewest 

possible clusters. 

Experiments. We run PASTA version 1.8.3 on two 

datasets, and for each, we compare the accuracy of 

the two decomposition algorithms, to see how our 

novel decomposition affects PASTA. Partitioning 

based on centroid and maximum size minimum cut. 

Both decomposition methods maintain the same 

maximum subset size and other characteristics. To 

test our models, we utilized data from the original 

PASTA article, namely, 19 different real-world 

HomFam datasets containing anything from 10,099 

to 93,681 protein sequences, and 10 replication of a 

simulated RNAsim dataset including 10,000 leaves. 

The RNASim was developed using a very intricate 

model of RNA evolution. Here, we make use of the 

simulation-determined true alignment as a standard. 

Since the real alignment for HomFam is unknown, 

we adopt the approach of using a limited set of seed 

sequences that have been manually selected to have 

a solid alignment as a reference [9, 56]. Alignment 

errors are quantified in both scenarios by means of 

two industry-standard measures calculated using 

FastSP [57]: Total SPFN (the share of 

inconsistencies between the calculated alignment 

and the reference alignment (i.e., missing 

homologies) and SPFP (the percentage of 

homologies in the estimated alignment not present 

in the reference). 

Results 
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Clustering of OTUs (First Application) Results 

By adjusting the threshold from 0.005 to 0.15, we 

get 181, 574 to 10, 112 clusters in the Greengenes 

dataset (note that singletons are also counted). The 

cluster diversity decreases in a non-linear fashion 

with increasing cluster formation thresholds (Fig 

2A and S1 Fig). When evaluating the three goals, 

 

 

Diagram of the similarities and differences between 

Greengenes and TreeCluster. Greengenes and 

TreeCluster (A) cluster diversity (Eq 1) vs OTU 

count. When evaluating cluster diversity, we use 

both hamming distance and tree-based distance. 

For all Greengenes data points and for certain 

TreeCluster data points, the threshold is shown. 

Check out S1 Fig to see how the various 

TreeCluster modes stack up against one another. 

Greengenes and TreeCluster's average-average (v) 

and average-maximum () distance to the centroid 

vs cluster count (B). The centers of TreeClusters 

may be calculated either by consensus or by 

reconstructing ancestral states. 

Max-diameter and Sum-length show comparable 

tendencies of cluster diversity scores when 

compared to other TreeCluster functions, however 

Single-linkage min-cut partitioning has much more 

diversity than the other two (S1 Fig). In this 

pattern, seen whether using tree distances or 

sequence distances, with differences being greater 

for tree distances. Finally, it is important to note 

that when calculated using tree distances, cluster 

diversity is smaller, indicating that clusters are 

close in phylogenetic space, despite the fact that 

tree distances are, as predicted, bigger than 

sequence distances (S2 Fig). 

Maxdiameter min-cut partitioning creates more 

compact clusters for tree-based scores than the 

standard Greengenes OTUs created using UCLUST 

(Fig 2A). Cluster diversity scores for Greengenes 

OTUs are much lower when using tree distance to 

assess sequence distances, and the disparity widens 

for higher thresholds. By way of illustration, for = 

0.15, the cluster diversity of Greengenes OTUs is 

three times that of TreeCluster OTUs. Greengenes 

and TreeCluster both produce about the same 

number of clusters at low threshold values (e.g., = 

0.03 for Greengenes is comparable to = 0.02 for 

TreeCluster) when comparing sequences using the 

Hamming distance. 

Remarkably, nevertheless, TreeCluster beats 

Greengenes OTUs by as much as 1.4-fold (e.g., = 

0.15) when the number of OTUs is drastically 

decreased. Despite the fact that UCLUST uses 

sequence distances, TreeCluster does not, this is the 

case. 

Greengenes's biggest cluster is much bigger than 

TreeCluster's (Table 1). For = 0.09, for instance, 

the number of clusters produced by Greengenes 

and TreeCluster is quite close (22.090 and 23.631 

clusters, respectively), while the greatest cluster 

size in Greengenes is 3.0 times that in TreeCluster 

(1,659 versus 540). However, at the same threshold 

value, 48% of Greengenes clusters are singletons 

but only 27% of TreeCluster clusters are singletons. 

Therefore, GreenGenes has a larger proportion of 

extreme cluster sizes compared to TreeCluster. 

Representative sequences in TreeCluster are more 

closely related to other cluster sequences than 

Greengenes, whether the distance is calculated 

using a consensus or an ASR technique (Fig 2B). 
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The v-score reveals a little performance gap 

between using consensus centroids and ASR 

representative sequences (e.g., = 0.062 and = 0.057, 

respectively, when = 0.15). ASR representative 

sequences perform somewhat better than consensus 

at all threshold levels (e.g., = 0.03 and = 0.04 

respectively when = 0.005), and the difference 

again rises as the number of clusters increases. 

TreeCluster computes better centroids for both 

sorts of sequences (e.g., up to 1.7-fold when = 0.15 

for ) than Greengenes representative sequences do 

for either measure. 

Application 2 Outcomes Dynamics of HIV 

Regardless of the settings we change, when we 

compare different TreeCluster modes, When 

compared to other clustering algorithms, Sum-

length TreeCluster always performs better, and 

adding the Clade requirement has little influence on 

performance (Fig 3). The average risk of the top 

1,000 people from Sum-length clusters is 0.85, 

which is much higher than the estimated risk of 

0.55 transmissions for a random selection of 

individuals. Maximum diameter in TreeClusters is 

a close second to sum length in all cases. 

TreeCluster's two modes are much more efficient 

than most alternatives. 

Single-linkage TreeCluster and HIV-TRACE 

consistently perform worse than the other methods 

when varying the expected time to begin ART and 

expected degree, with Single-linkage TreeCluster 

typically performing around the theoretical 

expectation of a random selection and HIV-

TRACE performing slightly better (Fig 3a and 3b). 

In addition, these 

 

Single-linkage TreeCluster and HIV-TRACE 

regularly perform worse than predicted by random 

selection, demonstrating trends that are not just 

attributable to the selected criteria (Fig 3c). 

Importance of Sum-length 

TreeCluster's Max-diameter setting is optimal for 

datasets with between 2,000 and 5,000 nodes, 

whereas the same setting is optimal for datasets 

with between 2,000 and 3,000 nodes. 

The Outcome of the Third Application: Enhancing 

PASTA 

To begin, we find that PASTA 1.8.3 is a significant 

upgrade over the 2015 version [52] released 

version, notably in terms of alignment accuracy for 

RNASim (by roughly 3%). This occurred because 

significant improvements were made to the PASTA 

program and associated tools. The alignment error 

is much reduced for the RNASim dataset when 

Max-size min-cut partitioning is used in PASTA, 

but only somewhat for the HomFam dataset (Fig. 

4). The average SPFN on RNAsim data decreases 

from 0.12 to 0.10, which is a 17% improvement in 

accuracy. These reductions are robust between 

replicates and noteworthy since the only 

modification we made to PASTA was to replace its 

deconstruction phase with our new clustering 

technique. In particular, the strategies for aligning 

and merging subsets and for inferring trees 

remained unchanged. While errors were reduced in 

the HomFam dataset, they were not drastically 

reduced (Fig 4b). Given these findings, we have 

updated PASTA to use Max-size min-cut 

partitioning by default. 

Discussion 

Several theoretical and practical issues should be 

further discussed. 
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Transmission clustering's efficiency (Figure 3). 

When evaluating the success of a vaccination 

campaign, the average number of people infected 

by the chosen 1,000 is used as the effectiveness 

metric. Predicted ART initiation time (A), 

predicted contact network degree (B), and cluster 

size (C) are shown along the horizontal axis. 

 

Mean-diameter min-cut partitioning 

Cluster Picker [4] is one of the available 

approaches that uses mean pairwise distance 

between nodes to establish its constraints. One may 

define a variant of the mincut partitioning issue that 

is similar to these by saying that 

 

Unfortunately, our greedy approach can only solve 

the "Mean-diameter" min-cut partitioning issue in 

linear time if we additionally include clade 

restrictions (Algorithm B in S1 Appendix). In light 

of the contrasting case, 

The lack of clade restrictions in S3 Fig causes the 

greedy method to fail. Using mean as a function fT 

( ) adds another layer of complexity, and whether 

or not it can be solved in linear time is still 

debatable. It's unclear whether mean diameter is a 

valid metric. For instance, it is feasible that a 

cluster's mean diameter is below the threshold, but 

the mean diameter of subclusters nested inside that 

cluster is not; such circumstances may not make 

sense for downstream applications. 

Collection of Best Answers 

There may be numerous optimum solutions to each 

of our min-cut partitioning issues, each using a 

different partition with the same number of 

clusters. Furthermore,  

As can be shown in Fig. 5, the number of possible 

optimum solutions might grow exponentially with 

the number of nodes in a binary phylogenetic tree. 

The sheer number of optimum solutions may make 

it impracticable to list them all, which is what this 

finding suggests. Finding a mechanism to 

summarize all optimum partitions, however, is still 

fascinating and might be useful in certain 

situations. Unfortunately, such a method of 

summarizing is not yet available to us. Despite the 

exponentially vast size of the optimum solution 

space, the set of all edges that might exist in any of 

the ideal solutions can be readily determined, as 

stated in Lemma A of S1 Appendix. As a result, we 

were able to locate unbreakable edges that would 

not be severed by any data clustering algorithm. 

 

Optional criteria selection 

Max-diameter and Sum-diameter, two of the three 

approaches we considered, were shown to 

consistently outperform Single-linkage. This 

finding seems reasonable. 

Due to the transitive nature of its criteria, single-

linkage may boost variety inside a cluster. As a 

result, transitivity may allow for the collapse of a 
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highly diverse dataset into a single cluster. Our 

interest in finding a solution to the Single-linkage 

issue was sparked by the fact that HIV-TRACE, the 

most popular HIV clustering approach, employs a 

similar idea. We found no benefit to using this 

method of clustering over Max-diameter or Sum-

length, thus we suggest those two alternatives 

instead. 

Max-diameter has the upper hand since its 

threshold is more intuitive. 

Finally, we highlight that although calculating 

consensus sequences is considerably simpler and 

quicker, ASR-based selection of representative 

sequences fared better. 

The current elapsed time 

Our primary comparison was TreeCluster's 

efficacy, but we also found that its running time 

(after the tree is inferred) was competitive with that 

of other clustering algorithms. We used HIV-

TRACE, Cluster Picker, and TreeCluster to a real-

world HIV dataset, processing subsets of data with 

100-5,000 sequences (Fig 6). TreeCluster's 

processing time on the biggest set with 5,000 

leaves did not surpass 2 seconds. HIV-Trace, which 

relies on sequences, took around a minute, which is 

very quick, whereas Cluster Picker took almost an 

hour. TreeCluster was able to accomplish 

clustering in under 30 seconds even on the 

Greengenes dataset, which has more than 200,000 

leaves. As a result of TreeCluster's speed, we can 

rapidly test how different criteria affect the results 

of our downstream applications. 

These estimates do not take into account the time 

required to infer the tree if one is not already 

available (although in many cases, a tree is inferred 

for other reasons and is thus already accessible). 

Just as an example, you may look at the data from 

 

For example, using PASTA and 12 CPUs, MSA 

and tree inference on datasets containing 10,000 

sequences might take close to an hour. It is 

estimated that around a third of this time is spent on 

tree inference (for example, see Fig 4 of [9]), while 

the other two-thirds is spent on the estimating 

alignment, which is also required by most 

alternative methods. 

Conclusion 

We presented TreeCluster, a technique that uses 

several optimization objective functions to cluster 

sequences at the branch tips of a phylogenetic tree. 

Several downstream applications, such as OTU 

clustering, HIV transmission clustering, and divide-

and-conquer alignment, were shown to make 

advantage of our linear-time techniques. The 

clusters' internal coherence and the quality of 

subsequent analysis are both enhanced by using the 

tree to construct them. 
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