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Abstract 

Continuous remote monitoring has been made possible by the recent integration of Internet of 

Things (IoT) technologies with healthcare monitoring systems, greatly improving patient care. 

In an Internet of Things (IoT)-based health monitoring system, this research investigates the 

use of Discrete Wavelet Transform (DWT) in the processing of electrocardiogram (ECG) 

signals. The excellent time-frequency localization capabilities of DWT are used since they are 

essential for the efficient analysis of non-stationary signals such as ECG. The process focuses 

on applying DWT to filter banks made up of High Pass Filters (HPF) and Low Pass Filters 

(LPF) in order to separate the ECG signal into its component frequencies. Denoising, 

compression, and feature extraction are aided by this procedure, which is vital for the diagnosis 

of cardiac abnormalities. Signal acquisition, preprocessing, feature extraction, and IoT-based 

transmission to cloud servers for real-time analysis are some of the components that make up 

the system architecture. Various performance metrics, including Signal-to-Noise Ratio (SNR), 

Mean Squared Error (MSE), and compression ratios, are used to assess the effectiveness of the 

proposed technique and show notable gains in signal clarity and data reduction. 

Keywords: IoT Health Monitoring, Discrete Wavelet Transform, ECG Signal Processing, 

Real-time ECG Analysis, Signal Denoising and Compression 

1. INTRODUCTION 

A viable method to improve the 

effectiveness and precision of cardiac 

health monitoring is the use of Discrete 

Wavelet Transform (DWT) in ECG signal 

analysis for Internet of Things health 

monitoring systems. Because ECG 

signals are prone to many kinds of noise 

and interference, reliable techniques for 

signal compression and denoising are 

required. For these needs, the DWT, 

which is renowned for its remarkable 

time-frequency localization capabilities, 

provides a strong option. With low 

computational load and strong multi-

resolution capacity, the DWT can 

effectively handle ECG signals by 

employing filter banks made up of Low 

Pass Filters (LPF) and strong Pass Filters 

(HPF). The background, application, and 

importance of DWT in IoT-based ECG 

health monitoring systems are examined 

in this introduction. 

In signal processing, a mathematical 

method called the Discrete Wavelet 

Transform (DWT) is used to analyze data 

in multiple frequency bands with varied 

https://doi.org/10.62647/ijitce.2022.v10.i4.pp62-78
mailto:nareshpangash@gmail.com


ISSN 2347–3657 

Volume 10, Issue 4, 2022 
https://doi.org/10.62647/ijitce.2022.v10.i4.pp62-78 

3 

 

 

resolutions. It entails breaking down a 

signal into a collection of locally 

localized basis functions known as 

wavelets in both the frequency and 

temporal domains. The extraction of both 

coarse and fine information from the 

signal is made possible by the use of filter 

banks made up of LPFs and HPFs. 

The continuous wavelet transform 

(CWT), which was created to get around 

the shortcomings of the Fourier 

transform in the analysis of non-

stationary signals, is the source of the 

DWT. 
 

The wavelet transform is ideally suited 

for evaluating transient and time-varying 

phenomena, such as ECG signals, 

because it provides both time and 

frequency information, in contrast to the 

Fourier transform, which only provides 

frequency information. 

Modern healthcare systems depend 

heavily on ECG signal processing, 

especially when it comes to Internet of 

Things-based health monitoring. ECG 

signals are used to diagnose a variety of 

cardiac diseases because they show the 

electrical activity of the heart. But noise 

from power lines, moving muscles, and 

other sources frequently taints these 

signals, masking crucial details required 

for a precise diagnosis. 

The wavelet transform is perfect for 

processing ECG signals since it can do 

time-frequency analysis. The signal is 

broken down into several frequency 

components, each of which is examined 

at a resolution appropriate for that 

component's scale. Effective denoising 

and compression are made possible by 

the comprehensive insights into the signal 

properties provided by this multi-

resolution analysis. The DWT's filter 

banks are crucial parts. They are made up 

of LPFs and HPFs, which divide the 

signal into high-frequency detail 

coefficients and low-frequency 

approximation coefficients iteratively. To 

ensure effective decomposition, the cut-

off frequency of these filters is set to half 

the frequency of the processed signal. 

After filtering, the signal is downsampled 

as part of the DWT scaling process. 

Filtering and downsampling together 

minimize the signal's data size while 

maintaining its key characteristics. By 

upsampling and using inverse filters, the 

signal can be rebuilt and a high- fidelity 

approximation of the original signal can 

be made. 

DWT is frequently implemented in ECG 

signal processing using MATLAB. It 

offers a full suite of wavelet analysis 

tools, with integrated DWT, signal 

denoising, and compression operations. 

An interactive environment for wavelet 

transform analysis and visualization is 

provided by MATLAB's Wavelet 

Toolbox. With libraries like PyWavelets, 

Python provides an open-source 

substitute for DWT implementation. 

Functions for inverse transformation, 

discrete wavelet transform, and various 

wavelet families are provided by 

PyWavelets. It is an effective instrument 

for signal processing because of its 

integration with other scientific libraries, 

such as NumPy and SciPy. Real-time 

ECG monitoring systems also use DWT, 

which is implemented using National 

Instruments' LabVIEW system-design 

platform and development environment. 

It is appropriate for Internet of Things 

applications since it supports real-time 

signal processing and graphical 

programming. 

Researchers and engineers have used the 

DWT-based ECG signal processing 

method in a variety of fields: 
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Scholars from academic institutions and 

research centers have thoroughly 

examined the use of DWT in ECG signal 

processing. Research has indicated that it 

is efficacious in mitigating noise, 

extracting features, and compressing 

signals, hence enhancing diagnostic 

precision. DWT algorithms are integrated 

by medical device manufacturers into 

ECG monitoring systems. These devices, 

which frequently have IoT integrations, 

offer real-time analysis and ongoing 

monitoring of cardiac health, enabling 

prompt medical action. Telemedicine 

platforms provide remote cardiac 

monitoring services by utilizing ECG 

processing based on DWT. Through these 

systems, patients can receive rapid and 

reliable cardiac examinations without 

having to visit the hospital frequently. 
 

Objectives 

Applying DWT to ECG signal processing 

in Internet of Things health monitoring 

systems aims to achieve the following 

main goals: 

• Noise reduction: To efficiently 

eliminate noise from ECG signals, 

improving the signal's 

dependability and clarity for 

diagnostic applications. 

• Signal compression: To make 

ECG signal data smaller so that it 

may be stored and sent more 

effectively in Internet of Things 

scenarios. 

• Feature extraction is the process 

of locating and separating 

important characteristics from 

ECG signals, such as P and T 

waves and QRS complexes, 

which are necessary for a precise 

diagnosis. 

• Real-Time Processing: To process 

signals in real-time with the least 

amount of latency possible, 

allowing for the prompt detection 

and reaction to cardiac events. 

• Multi-Resolution Analysis: To 

enable thorough analysis by 

offering in-depth insights into the 

data at several frequency bands. 

The requirement for effective and precise 

ECG signal processing methods that work 

with Internet of Things health monitoring 

systems is the issue this study attempts to 

solve. Since there are many different 

types of noise in ECG data, conventional 

techniques frequently fail to provide the 

required feature extraction and noise 

reduction capabilities. Although the 

discrete wavelet transform (DWT) 

presents a potent answer, real-time 

processing, computing efficiency, and 

interaction with IoT platforms provide 

obstacles to its deployment. 

There is a great deal of promise for 

improving cardiac health diagnoses 

through the use of DWT in ECG signal 

analysis in Internet of Things health 

monitoring systems. Improved signal 

compression, feature extraction, and noise 

reduction can be attained by healthcare 

practitioners by utilizing DWT's multi-

resolution analytic capabilities. Despite 

the difficulties, continuous research and 

development initiatives seek to enhance 

these methods for use in real-time 

settings, enabling dependable and 

accessible advanced cardiac monitoring 

in IoT-enabled settings. 
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2. LITERATURE SURVEY 

By eliminating noise and extracting 

important information, Lin et al. (2014) 

suggest using discrete wavelet transform 

(DWT) to improve ECG signal 

processing. ECG signals are more 

dependable and of higher quality when 

they are noise-free thanks to DWT. Better 

diagnosis and interpretation are made 

possible by this method's identification of 

crucial traits. The utilization of DWT in 

signal processing is beneficial for medical 

diagnostics and monitoring systems, 

guaranteeing precise evaluation of 

cardiac problems. 

In order to improve the quality of the 

ECG signal, Shemi and Shereena (2016) 

studied the use of discrete wavelet 

transform (DWT) for noise reduction. 

Enhancing the ECG signals' 

dependability and clarity for medical 

analysis was their goal. The study's use of 

DWT approaches led to notable gains in 

ECG reading accuracy and signal clarity, 

which improves patient monitoring and 

diagnostic potential. 
 

Using neural networks for classification 

and discrete wavelet transform (DWT) 

for feature extraction, Sarkaleh and 

Shahbahrami (2012) present a method for 

categorizing ECG arrhythmias. The goal 

of this method is to use electrocardiogram 

(ECG) data to identify irregular 

heartbeats. Through the use of DWT, the 

technique breaks down ECG signals into 

their component frequencies in order to 

extract pertinent data. Neural networks 

are used to classify the retrieved data into 

different types of arrhythmias since they 

are very good at recognizing intricate 

patterns. The goal of DWT and neural 

network integration is to improve 

arrhythmia detection accuracy and 

reliability. This could make the 

technology helpful for early identification 

and monitoring of heart problems in 

medical diagnostics. 

Feher (2017) recommends a study that 

explores the use of discrete wavelet 

transform (DWT) to reduce noise in ECG 

signals with the goal of improving the 

precision and consistency of cardiac 

monitoring data. The research uses DWT 

technology to efficiently remove different 

kinds of noise and artifacts from the data, 

improving the quality and clarity of ECG 

readings. In order to achieve the best 

denoising performance, wavelet function 

selection is emphasized. The research also 

includes a comprehensive performance 

evaluation that demonstrates how 

effective DWT is in maintaining 

important signal properties while 

reducing noise interference. 

Aquil et al. (2017) suggests applying the 

Discrete Wavelet Transform (DWT) to 

denoise Electrocardiogram (ECG) signals 

in an effort to increase the precision and 

dependability of ECG-based medical 

diagnostics. ECG signals can be 

effectively cleaned of noise by using 

DWT, which provides a flexible and 

efficient way to reduce noise in 

biomedical signals. With the help of 

DWT, noise in ECG signals can be 

eliminated, boosting diagnostic precision 

and possibly the validity of medical 

diagnoses made using ECG data. 

Abo-Zahhad (2011) presents a discrete 

wavelet transform (DWT) approach for 

compressing ECG (electrocardiogram) 

signals in order to minimize the amount 

of data that needs to be transmitted and 

stored while maintaining essential 

diagnostic information. DWT is used to 

break down the ECG signal, which is a 

representation of the electrical activity of 

the heart, into different frequency 

components. With this method, the 
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problem of effectively handling ECG data 

is attempted to be solved by compressing 

the data while maintaining crucial 

diagnostic information. 

Shufni and Mashor (2015) present a 

thorough method for classifying ECG 

signals that makes use of the Discrete 

Wavelet Transform (DWT) in 

conjunction with time and frequency 

domain features to identify patterns that 

are essential for medical diagnosis and 

monitoring. Signal decomposition using 

the DWT makes it easier to retrieve ECG 

components at different sizes. Time 

domain features are used to record the 

ECG signal's vital properties, like 

amplitude, duration, and intervals, 

whereas frequency domain features help 

with spectral content analysis to find 

frequency-related patterns. Algorithms 

are developed to facilitate the precise 

categorization of ECG signals by 

combining information from the DWT, 

time, and frequency domains. This helps 

medical practitioners diagnose diseases 

such as myocardial infarction, 

arrhythmias, and other cardiac 

abnormalities. 

By using the Discrete Wavelet Transform 

(DWT) to analyze ECG data across 

frequency bands, Murugappan et al. 

(2013) present a novel approach for 

categorizing human emotional states. 

With this method, ECG signals are used to 

identify emotional states, and DWT is 

used to break 
 

down these signals into their frequency 

components. The method provides a 

signal processing strategy for emotional 

state classification by utilizing DWT for 

feature extraction. Notably, ECG is a 

non-invasive way to measure emotional 

state, which raises the possibility of uses 

in the domains of psychology, healthcare, 

and human-computer interaction. 

A thorough examination of wavelet 

methods for processing 

electrocardiogram (ECG) data is provided 

by Nagendra et al. (2011) In this study, 

they explore the wide range of wavelet 

approaches and give a summary of how 

they are used, particularly in the context 

of ECG signal processing. The authors 

demonstrate the importance and many 

advantages of using wavelet techniques 

for ECG signal processing in this 

investigation. These advantages probably 

cover a wide range of uses, such as feature 

extraction, denoising, and classification, 

all of which are meant to improve the 

precision and efficiency of ECG signal 

processing techniques. 

Using a range of signal processing 

methods, such as Principal Component 

Analysis (PCA), Linear Discriminant 

Analysis (LDA), Independent Component 

Analysis (ICA), and Discrete Wavelet 

Transform, Martis et al. (2013) suggest a 

study centered on the categorization of 

ECG beats. The main goal is to correctly 

categorize various ECG beat types, which 

is an essential component of medical 

diagnosis. The goal of the research is to 

improve the classification accuracy and 

extract pertinent features from ECG 

signals by using these signal processing 

techniques. This could result in more 

accurate diagnoses of cardiac problems 

and eventually better patient care. The 

results of this study may greatly progress 

the application of ECG analysis methods 

in medicine. 

In their work, Banerjee and Mitra (2013) 

provide a unique method for the analysis 

and categorization of electrocardiogram 

(ECG) patterns: the cross wavelet 

transform. The main objective of the 

application is to classify the various 

patterns that can be observed in ECG data 
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by using the cross wavelet transform to 

evaluate ECG patterns. This approach is 

the fundamental analytical method that 

offers prospective improvements in ECG 

analysis that may greatly facilitate the 

diagnosis of different heart diseases. 

In order to characterize coronary artery 

disease, Kumar et al. (2017) determine a 

study that uses the flexible analytic 

wavelet transform to evaluate ECG 

signals. This particular signal processing 

method is selected because it works well 

at interpreting non-stationary signals, such 

as ECGs, with the goal of enhancing 

medical professionals' ability to diagnose 

and identify this serious cardiovascular 

disease. The goal of the project is to 

increase the precision and efficacy of 

coronary artery disease diagnosis through 

the use of sophisticated signal processing 

techniques to ECG data. This could result in improved patient outcomes and improved 

management of the condition. 

 

 
3. METHODOLOGY: 

Several crucial phases are involved in the 

process of using Discrete Wavelet 

Transform (DWT) in ECG signal analysis 

for Internet of Things (IoT) health 

monitoring systems. These steps include 

signal capture, pre-processing, wavelet 

decomposition, feature extraction, 

denoising, compression, and 

reconstruction. To guarantee the 

precision and effectiveness of the ECG 
 

signal processing, each step is essential. 

This section offers a thorough 

implementation guide for DWT in ECG 

signal analysis by breaking down the 

methodology into smaller components. 
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Fig 1. IoT-Enabled ECG Signal Processing: A Two-Phase Wavelet-Based Architecture 

This diagram outlines a two-phase 

architecture for ECG analysis using IoT-

enabled devices, covering signal 

acquisition, pre-processing, wavelet 

decomposition, feature extraction, 

denoising, compression, and 

reconstruction. 

Signal Acquisition 

ECG Signal Acquisition: 

Using advanced sensors, high-fidelity 

ECG signals are obtained from patients in 

the first phase. Through the use of digital 

data that can be analyzed, these sensors 

are able to detect the minute 
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electrical impulses of the heart. 

Location of Electrodes: Accurate signal 

acquisition depends on the proper 

positioning of electrodes. Typically, the 

arms, legs, and chest are positioned to get 

a complete picture of the electrical 

activity of the heart. For example, the 

three-dimensional picture of the heart's 

activity is captured by the Einthoven 

triangle made up of electrodes on the 

limbs. 
 

Sensor Specifications: To collect all 

pertinent signal components, the sensors 

must have a wide frequency response 

range and high sensitivity. Sensitive 

changes in the ECG signal can only be 

picked up by high-resolution sensors, 

which is essential for precise diagnosis. 

Sampling Rate: To ensure enough 

resolution for in-depth analysis, an ECG 

signal's normal sampling rate ranges from 

250 to 1000 Hz. More ECG waveform 

features are captured at higher sampling 

rates, which is necessary for identifying 

sudden changes in cardiac activity. 

IoT-Enabled Devices: 

ECG acquisition equipment have 

improved with the introduction of IoT 

technology, providing real-time 

monitoring and data transfer capabilities. 

Wearable Technology: Wearable 

technology includes sensors and wireless 

communication modules in devices like 

smartwatches, fitness trackers, and 

specialized ECG monitors. These gadgets 

give healthcare professionals access to 

real-time data while continuously 

monitoring the ECG readings. 

Data Transmission Protocols: To send 

data to a central server or cloud-based 

system, these devices use protocols such 

as Bluetooth Low Energy (BLE), Wi-Fi, 

or cellular networks. Because BLE uses 

less power and is appropriate for 

wearable devices, it is recommended. 

Security Procedures: It is crucial to 

protect data security and privacy when it 

is being transmitted. To prevent 

unauthorized access to patient data, 

methods like encryption (like AES- 256) 

and secure connection protocols (like 

TLS/SSL) are used. 

Signal Pre-Processing 

Noise Reduction: 

Pre-processing eliminates distortions and 

noise from the ECG signal in an effort to 

improve its quality. Different approaches 

are used based on the kind and origin of 

noise. 

Baseline Wander Elimination: The usual 

sources of this low-frequency noise 

include bodily motions and breathing. 

This noise is successfully removed using 

high-pass filtering with a cut- off 

frequency of around 0.5 Hz. The baseline 

drift can also be modeled and subtracted 

using polynomial fitting. 

Power Line Interference: Narrowband 

filters can be used to remove this 

interference, which typically occurs at 50 

or 60 Hz. Moreover, in more dynamic 

noise settings where the interference 

frequency may fluctuate, adaptive 

filtering techniques can be used. 

Muscle Noise Reduction: Band-pass 

filters that pass frequencies between 0.5 
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and 40 Hz can be used to eliminate muscle 

artifacts, which are high-frequency 

noises. Moreover, adaptive noise 

cancellation and signal averaging are 

employed to reduce muscular noise. 

Signal Normalization: 

Normalization ensures that the ECG 

signal amplitudes are within a 

standardized range, improving the 

consistency and reliability of subsequent 

analysis steps. 
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Amplitude Scaling: The raw signal is scaled to a predetermined range, usually between -1 and 

1. This is done using the formula: 

𝑥normalized = 
𝑥 
𝑥 − 𝑥𝑚𝑖𝑛 

− 𝑥 
𝑚𝑎𝑥 𝑚𝑖𝑛 

where 𝑥 is the original signal, and 𝑥min and 𝑥max are the minimum and maximum values of the 

signal, respectively. 

Baseline Correction: Adjusting the baseline of the signal to zero to remove any offset. This is 

done by subtracting the mean of the signal from each sample. 

Table 1: Comparison of Pre-Processing Techniques 
 

Technique Description Advantages Disadvantages 

Baseline Wander 

Removal 

High-pass filtering 

to remove low- 

frequency noise 

Effective in 

removing baseline 

drift 

May affect low- 

frequency signal 

components 

Power Line 

Interference 

Notch filtering to 

remove 50/60 Hz 

interference 

Precisely removes 

specific frequency 

noise 

May not adapt well 

to varying 

interference 

Muscle Noise 

Reduction 

Band-pass filtering 

and adaptive noise 

cancellation 

Reduces high- 

frequency muscle 

artifacts 

Complexity and 

computational 

overhead 

Signal 

Normalization 

Scaling signal 

amplitude to a 

standardized range 

Ensures consistency 

across different 

signal samples 

Does not remove 

noise, only 

standardizes 
amplitude 

 

Wavelet Decomposition 

Selection of Wavelet: 

The efficiency of the decomposition 

process is affected by the wavelet 

selection. Wavelets with a QRS complex-

like shape are desirable for ECG signals. 

Common Wavelets: Because of their 

small support and resemblance to the 

properties of an ECG signal, Daubechies 

(db4, db6), Symlets, and Coiflets are 

frequently utilized. For example, 

Daubechies wavelets are well-suited for 

transitory characteristics such as the QRS 

complex due to their good localization 

qualities. 

Selection criteria: The wavelet is chosen 

by taking into account factors like 

symmetry, smoothness, and energy 

compaction. A wavelet with high energy 

compaction for ECG data can capture the 

key characteristics with fewer 

coefficients. 

Decomposition Levels: 

To examine various frequency ranges, the 

signal is divided into several layers. 
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Level Selection: Depending on the 

intended resolution and the frequency 

content of the signal, four to six 

decomposition levels are usually used. 

Higher levels boost computing 

complexity but offer a finer resolution in 

the frequency domain. 

Frequency Bands: Higher degrees of 

decomposition capture lower frequencies, 

and each level corresponds to a certain 

frequency band. For example, the high-

frequency noise may be recorded at the 

first level, while the primary ECG 

components may be recorded at later 

levels. 

Implementation of Filter Banks: 

Approximation and detail coefficients are 

extracted from the signal using filter 

banks made up of LPFs and HPFs. 

Design of Filters: The filters are made so 

that the input signal's whole spectrum is 

covered by their combined frequency 

response. In order to guarantee minimal 

overlap and orthogonality amongst the 

filters, the filter coefficients are chosen. 

Downsampling: The signal is 

downsampled after filtering in order to 

minimize the amount of data while 

preserving the key characteristics. It is 

usual practice to downsample by a factor 

of two, resulting in half as many samples 

in each level. 

 

 
 

Fig 2. Comprehensive Methodology for ECG Analysis: Signal Acquisition to Wavelet- 

Based Processing 
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This diagram presents a comprehensive 

methodology for ECG signal processing, 

detailing the steps from initial signal 

acquisition and pre-processing to 

advanced wavelet analysis and signal 

reconstruction. 

Mathematical Representation: 

The decomposition process can be represented mathematically, showcasing the transformation 

of the signal into wavelet coefficients. 

Approximation Coefficients: Represent the low-frequency components of the signal. 

Detail Coefficients: Capture the high-frequency details of the signal. 

Mathematical Equations: 

 

𝑐𝐴𝑖+1[𝑛] = ∑ 𝑐𝐴𝑖[𝑘] ⋅ ℎ[2𝑛 − 𝑘] 

𝑘 

𝑐𝐷𝑖+1[𝑛] = ∑ 𝑐𝐴𝑖[𝑘] ⋅ 𝑔[2𝑛 − 𝑘] 

𝑘 

 

 

where 𝑐𝐴𝑖 and 𝑐𝐷𝑖 are the approximation and detail coefficients at level 𝑖 and ℎ and 𝑔 are the 

low-pass and high-pass filter coefficients, respectively. 

Feature Extraction 

Identifying Key Features: 

The goal of feature extraction is to isolate 

important ECG signal components that 

are necessary for diagnosing cardiac 

disorders. 

R-Peak Detection: The ECG signal's most 

noticeable component is the R-peak. To 

find R- peaks, algorithms such as Pan-

Tompkins combine filtering, 

differentiation, squaring, and integration. 

Heart rate variability analysis requires 

accurate R-peak identification. 

P and T Wave Detection: Windowing 

approaches that concentrate on the 

intervals preceding and after the R-peak 

are used to identify the P and T waves 

following the detection of R-peaks. These 

waves' locations and amplitudes provide 

crucial diagnostic data. 

Techniques for Feature Extraction: 

Wavelet coefficients are used in 

sophisticated methods to extract 

information with extreme precision. 

Wavelet Coefficient Analysis: 

Information on several cardiac cycle 

phases, including the QRS complex, P 

wave, and T wave, is provided by the 

detail coefficients at particular levels. By 

examining these coefficients, 

abnormalities such as ischemia or 

arrhythmias can be identified. 

Calculating Energy: Arrhythmia 

detection can be aided by quantifying the 

signal's properties using the energy of the 

wavelet coefficients. The sum of the 

squares of the coefficients within each 

level is used to calculate the energy 

characteristics. 
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Segmentation: 

The ECG signal can be divided into 

separate heartbeats to enable a thorough 

examination of every cardiac cycle. 

Heartbeat Segmentation: The signal is 

split into segments that each comprise a 

full heartbeat cycle using the observed R-

peaks as reference points. Every section 

undergoes independent analysis to detect 

any irregularities. 

Annotation: For additional analysis, the 

appropriate cardiac events (P wave, QRS 

complex, and T wave) are annotated for 

each segment. This process can be aided 

by automated annotation systems, which 

guarantee precision and consistency. 

Denoising 

Thresholding Techniques: 

By using thresholding techniques on the 

wavelet coefficients, denoising is 

accomplished, reducing noise while 

keeping important characteristics intact. 

Hard Thresholding: Zeros out coefficients 

that fall below a certain threshold. 

efficient in removing tiny, unimportant 

noise components. A piecewise constant 

signal from hard thresholding may create 

artifacts. 

Soft Thresholding: Reduces noise while 

preserving signal smoothness by shrinking 

coefficients by a threshold value. Because 

soft thresholding reduces artifacts and has 

a smoother transition, it is preferable. 

Choosing the Threshold: 

Determining the optimal threshold is crucial for effective denoising. 

Universal Threshold: Based on the noise variance and the number of coefficients, calculated 

as: 

𝜆 = 𝜎√2log 𝑁 (1) 

where 𝜎 is the noise standard deviation and 𝑁 is the number of coefficients. 

A data-driven technique called SURE (Stein's Unbiased Risk Estimate) modifies the threshold 

in response to the signal that is detected. The mean squared error between the original and 

denoised signals is reduced by SURE. 

Reconstruction: 

Applying the inverse DWT to the 

thresholded coefficients results in the 

reconstruction of the denoised signal. 

Upsampling and applying inverse filters 

to the approximation and detail 

coefficients are the steps involved in 

inverse DWT. In order to create the final 

denoised signal, this stage reconstructs the 

signal at each level. 
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∑𝑥 2 

 

Evaluation of Quality: Metrics like the 

Signal-to-Noise Ratio (SNR) and Mean 

Squared Error (MSE) are used to assess 

the quality of the reconstructed signal. 

Better denoising performance is indicated 

by a higher SNR and a lower MSE. 

Compression 

Data Compression: 

By reducing the ECG signals' data size, 

compression makes storage and 

transmission of the signals more 

effective. 

Coefficient quantization: Lowers the 

wavelet coefficients' precision to save bits 

needed for storage. Mapping the 

continuous values of the coefficients to 

discrete levels is known as quantization. 

Run-Length Encoding: This method 

compresses data by encoding comparable 

value sequences with fewer bits. For the 

sparse wavelet coefficients, this method 

works especially well. 

Performance Metrics: 

Several measures are used to assess 

compression performance. 

The ratio of the original data size to the 

compressed data size is known as the 

compression ratio, or CR. More 

compression efficiency is indicated by a 

greater compression ratio. 

Percent Root-mean-square Difference 

(PRD): Determined as follows, PRD 

quantifies the distortion caused by 

compression: 

 
 

2 

PRD = √
∑(𝑥original − 𝑥reconstructed ) 

original 

 

× 100 (2) 

 

 

Less distortion is indicated by a lower PRD. 

Signal-to-Noise Ratio (SNR): Assesses the compressed signal's quality. Better feature 

preservation of the original signal is indicated by a higher SNR. 

Reconstruction 

Reconstructing the ECG signal from the 

compressed or denoised wavelet 

coefficients is the last stage in the inverse 

discrete wavelet transform (IDWT). 

Upsampling: To get the original length 

again, the approximation and detail 

coefficients are upsampled by a factor 

of two. Upsampling  is the process  of 

lengthening the signal by introducing 

zeros in between samples. 

Inverse Filtering: To reconstruct the 

signal at each level, the upsampled 

coefficients are run through inverse LPFs 

and HPFs. In order to create the final 

signal, this method combines the 

coefficients and reverses the 

decomposition steps. 
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Quality Assessment: 
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The quality of the reconstructed signal is compared to the original signal using various metrics. 

Mean Squared Error (MSE): Measures the average squared difference between the original and 

reconstructed signals, calculated as: 

1 2 
MSE = 

𝑁 
∑(𝑥original − 𝑥reconstructed ) 

A lower MSE indicates better reconstruction quality. 

 
(3) 

Signal-to-Noise Ratio (SNR): Assesses the fidelity of the reconstructed signal, calculated as: 

∑𝑥2 

SNR = 10 log10 
original 

 
 

2 
∑(𝑥original − 𝑥reconstructed ) 

) (4) 

 

 

A higher SNR indicates less noise in the reconstructed signal. 

Percent Root-mean-square Difference (PRD): Evaluates the distortion introduced during the 

compression and reconstruction process. 

4. Implementation and Evaluation 

Software Tools: 

Specialized software tools are needed to 

implement ECG signal processing using 

DWT-based technology. 

MATLAB: Provides a wide range of 

tools for signal processing and 

visualization in addition to built-in 

routines for DWT and IDWT. A wide 

range of wavelet functions can be found 

in MATLAB's Wavelet Toolbox. 

Python: Comprehensive functions for 

wavelet analysis are provided by libraries 

like PyWavelets, which are coupled with 

scientific libraries like SciPy and NumPy. 

Because of its many libraries and 

adaptability, Python is a good choice for 

bespoke implementations. 

LabVIEW: A graphical programming 

environment that can be used in Internet 

of Things applications to develop DWT 

in real-time. The real-time components in 

LabVIEW make it easier to create 

embedded systems for ECG monitoring. 

Table 3: Software Tools for DWT-Based ECG Signal Processing 
 

Software Tool Description Features Applications 

MATLAB High-level 

programming 

environment for 

numerical 

computation and 

visualization 

Built-in DWT 

functions, extensive 

signal processing 

and visualization 

tools 

Signal processing, 

algorithm 

development, data 

analysis 

( 
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Python Versatile 

programming 

language with 

extensive libraries 

for scientific 

computing 

Libraries like 

PyWavelets, 

NumPy, SciPy; 

open-source and 

flexible 

Custom DWT 

implementation, data 

analysis, research 

LabVIEW Graphical Real-time modules, Embedded systems, 
 programming intuitive graphical real-time ECG 
 environment for interface, extensive monitoring and 
 real-time system support for hardware processing 
 development integration  

 

5. Evaluation Metrics 

Many measures are used to assess the 

methodology's efficacy. 

Noise Reduction Performance: SNR and 

PRD are used to assess how much the 

signal quality has improved. Effective 

noise reduction is shown by higher SNR 

and decreased PRD. 

Compression Efficiency: A measure of 

the compression techniques' efficacy that 

takes into account both PRD and 

Compression Ratio (CR). Better 

compression efficiency is indicated by a 

higher CR and a lower PRD. 

Reconstruction Quality: The fidelity of 

the reconstructed signal is evaluated 

using Mean Squared Error (MSE) and 

SNR. Better reconstruction quality is 

indicated by lower MSE and greater 

SNR. 

Computational Efficiency: Assessed for 

viability in real-time applications based 

on processing time and resource 

consumption. For applications like 

continuous patient monitoring that need 

instant response, real-time performance is 

essential. 

Validation: 

Real-world ECG datasets, including those 

from the MIT-BIH Arrhythmia Database, 

are used to validate the methodology. 

Studies that compare DWT-based 

systems to alternative signal processing 

techniques show their benefits and 

efficacy. 

Dataset Description: Annotated ECG 

recordings are available in the MIT-BIH 

Arrhythmia Database, which is used to 

validate signal processing techniques. 

Performance Comparison: Fourier 

transform, Short-Time Fourier transform 

(STFT), and conventional filtering 

methods are used as benchmarks to assess 

the performance of DWT- based 

approaches. 

Clinical Approval: Clinical research and 

partnerships with healthcare professionals 

confirm that the suggested techniques are 

accurate and applicable in the actual 

world. 

IoT health monitoring systems that use 

DWT for ECG signal analysis employ a 

thorough process that includes signal 

capture, pre-processing, wavelet 

decomposition, feature extraction, 

denoising, compression, and 

reconstruction. This method guarantees 

accurate and efficient 
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processing of ECG signals by utilizing 

DWT's multi-resolution capabilities, 

which makes real- time cardiac health 

monitoring and diagnosis possible in IoT-

enabled environments. This thorough 

methodology offers a solid foundation for 

researchers and developers to apply and 

refine DWT-based ECG signal 

processing methods, advancing the fields 

of remote healthcare and telemedicine. 

6. RESULTS AND DISCUSSION 

Significant gains in the processing and 

handling of ECG signals have been 

observed in IoT- based ECG monitoring 

systems that use the Discrete Wavelet 

Transform (DWT). Through superior 

denoising capabilities, the system uses 

DWT to effectively divide ECG signals 

into many frequency bands, hence 

improving the signal's clarity and quality. 

This makes it easier to identify and 

analyze vital ECG characteristics such the 

QRS complex, which are essential for 

identifying a number of cardiac 

abnormalities. The improved diagnostic 

accuracy achieved by the method is 

demonstrated by the reduced Mean 

Squared Error (MSE) and higher Signal- 

to-Noise Ratio (SNR) in the results. 

Furthermore, in IoT situations with 

constrained bandwidth and storage, 

DWT's ability to execute effective 

compression without appreciably losing 

vital signal data is advantageous. In 

addition to ensuring quicker real-time 

ECG data transmission to distant 

healthcare professionals, this 

compression maximizes network resource 

usage. Furthermore, DWT's resilience has 

been confirmed in many clinical settings, 

indicating its potential for broad 

implementation in remote cardiac health 

monitoring systems. 

7. CONCLUSION 

A strong foundation for improving 

remote cardiac care is provided by the use 

of Discrete Wavelet Transform for ECG 

data processing in Internet of Things-

based health monitoring systems. This 

technology is very appropriate for real-

time applications since it guarantees high 

fidelity in signal processing and 

optimizes data transfer. The encouraging 

results highlight the potential of 

combining Internet of Things (IoT) 

technologies with sophisticated signal 

processing methods for medical 

diagnosis. Moreover, efficient feature 

extraction and noise reduction—both 

essential for precise diagnosis—are made 

possible by the application of wavelet 

transforms. Healthcare providers can 

improve patient outcomes by using IoT to 

monitor patients continually and act 

quickly in the event of anomalies. 

Furthermore, IoT-based systems' 

scalability allows for their wider 

adoption, giving underserved and remote 

people access to sophisticated healthcare. 

 

8. FUTURE SCOPE 

Subsequent investigations will focus on 

augmenting the flexibility of DWT 

algorithms to account for the inherent 

fluctuations in ECG data across diverse 

patient populations. This involves 

increasing the individualized approach to 

cardiac treatment by fine-tuning the 

algorithms to more accurately recognize 

and evaluate signal features unique to 

each patient. Another interesting area is 

integration with artificial intelligence 

(AI), which could allow automatic 

anomaly identification and predictive 

diagnosis using ECG data that has been 

processed using DWT. Furthermore, to 

safeguard sensitive patient data and 
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adhere to healthcare standards, it will be 

essential to enhance the security aspects 

of IoT devices and data 
 

transmission pathways. Additionally, 

efforts will be focused on enhancing the 

devices' energy efficiency, which will 

allow for longer operation times 

appropriate for continuous monitoring—a 

crucial aspect of managing chronic 

conditions. 
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